Clasificación automática de estados de madurez de frutas utilizando imágenes hiperespectrales y redes neuronales convolucionales profundas
En este documento se lleva a cabo un sistema de visión por computador para la clasificación de estados de madurez de frutas utilizando imágenes hiperespectrales (HSI) y redes neuronales convolucionales (CNN). Para dicha tarea se evalúan tres frutas: aguacate, kiwi y papaya. Las HSI fueron captadas e...
- Autores:
-
Jiménez Mejía, Yeison Stiven
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Tecnológica de Pereira
- Repositorio:
- Repositorio Institucional UTP
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.utp.edu.co:11059/14931
- Acceso en línea:
- https://hdl.handle.net/11059/14931
https://repositorio.utp.edu.co/home
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
Algoritmos de aprendizaje profundo
Procesamiento de imágenes hiperespectrales
Reconocimiento de patrones
Aprendizaje profundo
Estados de madurez
Inteligencia artificial
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
UTP2_019e6287ab2415132b9c2bcbbff89952 |
---|---|
oai_identifier_str |
oai:repositorio.utp.edu.co:11059/14931 |
network_acronym_str |
UTP2 |
network_name_str |
Repositorio Institucional UTP |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Clasificación automática de estados de madurez de frutas utilizando imágenes hiperespectrales y redes neuronales convolucionales profundas |
title |
Clasificación automática de estados de madurez de frutas utilizando imágenes hiperespectrales y redes neuronales convolucionales profundas |
spellingShingle |
Clasificación automática de estados de madurez de frutas utilizando imágenes hiperespectrales y redes neuronales convolucionales profundas 000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación Algoritmos de aprendizaje profundo Procesamiento de imágenes hiperespectrales Reconocimiento de patrones Aprendizaje profundo Estados de madurez Inteligencia artificial |
title_short |
Clasificación automática de estados de madurez de frutas utilizando imágenes hiperespectrales y redes neuronales convolucionales profundas |
title_full |
Clasificación automática de estados de madurez de frutas utilizando imágenes hiperespectrales y redes neuronales convolucionales profundas |
title_fullStr |
Clasificación automática de estados de madurez de frutas utilizando imágenes hiperespectrales y redes neuronales convolucionales profundas |
title_full_unstemmed |
Clasificación automática de estados de madurez de frutas utilizando imágenes hiperespectrales y redes neuronales convolucionales profundas |
title_sort |
Clasificación automática de estados de madurez de frutas utilizando imágenes hiperespectrales y redes neuronales convolucionales profundas |
dc.creator.fl_str_mv |
Jiménez Mejía, Yeison Stiven |
dc.contributor.advisor.none.fl_str_mv |
Holguín Londoño, Germán Andrés |
dc.contributor.author.none.fl_str_mv |
Jiménez Mejía, Yeison Stiven |
dc.subject.ddc.none.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación |
topic |
000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación Algoritmos de aprendizaje profundo Procesamiento de imágenes hiperespectrales Reconocimiento de patrones Aprendizaje profundo Estados de madurez Inteligencia artificial |
dc.subject.other.none.fl_str_mv |
Algoritmos de aprendizaje profundo Procesamiento de imágenes hiperespectrales Reconocimiento de patrones |
dc.subject.proposal.spa.fl_str_mv |
Aprendizaje profundo Estados de madurez Inteligencia artificial |
description |
En este documento se lleva a cabo un sistema de visión por computador para la clasificación de estados de madurez de frutas utilizando imágenes hiperespectrales (HSI) y redes neuronales convolucionales (CNN). Para dicha tarea se evalúan tres frutas: aguacate, kiwi y papaya. Las HSI fueron captadas en los rangos visible e infrarrojo cercano del espectro electromagnético. Los estados de madurez se clasifican en tres clases: inmaduro, maduro y sobremaduro. Además, para la clasificación se utilizan dos arquitecturas de CNN populares, AlexNet y ResNet50, y se propone una CNN para dicha tarea. La CNN propuesta muestra resultados prometedores y compite fuertemente con las otras dos CNN. Con esto se logra determinar que el sistema es adecuado para ser aplicado a tareas agroindustriales. |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-02-05T19:47:08Z |
dc.date.available.none.fl_str_mv |
2024-02-05T19:47:08Z |
dc.type.none.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11059/14931 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Pereira |
dc.identifier.reponame.none.fl_str_mv |
Repositorio Institucional Universidad Tecnológica de Pereira |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.utp.edu.co/home |
url |
https://hdl.handle.net/11059/14931 https://repositorio.utp.edu.co/home |
identifier_str_mv |
Universidad Tecnológica de Pereira Repositorio Institucional Universidad Tecnológica de Pereira |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
[1] MUNIRATHINAM, Sathyan. Industry 4.0: Industrial internet of things (IIOT). En: Advances in computers, tomo 117. Elsevier, 2020, págs. 129–164. 1 [2] QUIÑONES ORTEGA, Kevin David. Seguimiento visual de un manipulador se rial utilizando redes neuronales profundas. Proyecto fin de carrera. Facultad de Ingenierías. En: Universidad Tecnológica de Pereira, 2023. 1, 15 [3] WANG, Lizhi, et al. HyperReconNet: Joint Coded Aperture Optimization and Image Reconstruction for Compressive Hyperspectral Imaging. En: IEEE Transac tions on Image Processing, tomo 28, No 5, 2019, págs. 2257–2270. 1 [4] ONU. Desafíos globales: población. global-issues/population. 1.1 [5] MATHIEU, Edouard y RODÉS-GUIRAO, Lucas. What are the sources for Our World in Data’s population estimates? En: Our World in Data, 2022. 1 [6] MAJA, Mengistu M y AYANO, Samuel F. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. En: Earth Systems and Environment, tomo 5, 2021, págs. 271–283. 1.1 [7] MITRI, George, et al. Evaluating exposure to land degradation in association with repetitive armed conflicts in North Lebanon using multi-temporal satellite data. En: Environmental monitoring and assessment, tomo 186, 2014, págs. 7655–7672. 1.1 [8] MINAMBIENTE. Política para la gestión sostenible del suelo. Ministerio de Ambiente y Desarrollo Sostenible, 2016. ISBN 978-958-8901-24-4. 1.1 [9] CONPES4021. Política nacional para el Control de la Deforestación y la Gestión Sostenible de los Bosques. En: Ministerio de Ambiente y Desarrollo Sostenible, 2020. 1.1 [10] DNP. Política General de Ordenamiento Territorial. En: FEDESARROLLO: Cen tro de Investigación Económica y Social, 2019. 1.1 [11] JAVAID, Mohd, et al. Enhancing smart farming through the applications of Agri culture 4.0 technologies. En: International Journal of Intelligent Networks, tomo 3, 2022, págs. 150–164. ISSN 2666-6030. 1.1 [12] NATURALES, Recursos; DE RIESGOS PRODUCTIVOS, Gestión, et al. Hacia una agricultura sostenible, resiliente al clima y baja en emisiones. Región Andina. En: Hacia una agricultura sostenible, resiliente al clima y baja en carbono, 2022. 1.1 [13] KUMAR, Indrajeet, et al. Opportunities of artificial intelligence and machine learning in the food industry. En: Journal of Food Quality, tomo 2021, 2021, págs. 1–10. 1.1 [14] SMIDT, Hermanus Jacobus y JOKONYA, Osden. Factors affecting digital techno logy adoption by small-scale farmers in agriculture value chains (AVCs) in South Africa. En: Information Technology for Development, tomo 28, No 3, 2022, págs. 558–584. 1.1 [15] ARAÚJO, Sara Oleiro, et al. Characterising the agriculture 4.0 landsca pe—emerging trends, challenges and opportunities. En: Agronomy, tomo 11, No 4, 2021, pág. 667. 1.1 [16] HUSSAIN, Abid; PU, Hongbin y SUN, Da Wen. Innovative nondestructive imaging techniques for ripening and maturity of fruits– A review of recent applications. En: Trends in Food Science & Technology, tomo 72, 2018, págs. 144–152. ISSN 0924-2244. 1.1 [17] CHANDRASEKARAN, Indurani, et al. Potential of Near-Infrared (NIR) Spec troscopy and Hyperspectral Imaging for Quality and Safety Assessment of Fruits: an Overview. En: Food Analytical Methods, tomo 12, 2019, págs. 2438–2458. ISSN 1936976X. 1.1, 2 [18] KHAN, Atiya, et al. A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications. En: Ecological Informatics, tomo 69, 2022, pág. 101678. 1.1 [19] RIZZO, Matteo, et al. Fruit ripeness classification: A survey. En: Artificial Intelli gence in Agriculture, 2023. 1.2, 3.1 [20] AHERWADI, Nagnath, et al. Prediction of fruit maturity, quality, and its life using deep learning algorithms. En: Electronics, tomo 11, No 24, 2022, pág. 4100. 1.2 [21] BENELLI, Alessandro, et al. Ripeness evaluation of kiwifruit by hyperspectral imaging. tomo 223. Elsevier, 2022, págs. 42–52. 1.2, 2, 2, 3.1 [22] HUSSAIN, Abid; PU, Hongbin ySUN,Da-Wen. Innovative nondestructive imaging techniques for ripening and maturity of fruits–a review of recent applications. En: Trends in Food Science & Technology, tomo 72, 2018, págs. 144–152. 1.2, 2 [23] SUN, Da Wen. Hyperspectral Imaging for Food Quality Analysis and Control. 1a edición. Elsevier Inc., 2010. ISBN 978-0-12-374753-2. 2, 3.2, 1 [24] VARGA, Leon Amadeus; MAKOWSKI, Jan y ZELL, Andreas. Measuring the Ripeness of Fruit with Hyperspectral Imaging and Deep Learning. En: 2021 Inter national Joint Conference on Neural Networks (IJCNN), 2021, págs. 1–8. 2, 4.1, 4.1, 8 [25] ELMASRY, Gamal, et al. Hyperspectral imaging for nondestructive determina tion of some quality attributes for strawberry. En: Journal of Food Engineering, tomo 81, 2007, págs. 98–107. ISSN 02608774. 2 [26] SAHU, Priyanka, et al. A Systematic Literature Review of Machine Learning Techniques Deployed in Agriculture: A Case Study of Banana Crop. En: IEEE Access, tomo 10, 2022, págs. 87333–87360. 2 [27] MAGABILIN, Ma. Christina V.; FAJARDO, Arnel C. y MEDINA, Ruji P. Opti mal Ripeness Classification of the Philippine Guyabano Fruit using Deep Learning. En: 2022 Second International Conference on Power, Control and Computing Tech nologies (ICPC2T), 2022, págs. 1–5. 3.1 [28] HAN, Yifei, et al. Predicting the ripening time of ‘Hass’ and ‘Shepard’avocado fruit by hyperspectral imaging. En: Precision Agriculture, 2023, págs. 1–17. 3.1 [29] THAKUR, Rucha, et al. An Innovative Approach For Fruit Ripeness Classifica tion. En: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 2020, págs. 550–554. 3.1 [30] KOU, Xiaohong, et al. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. En: Plant Molecular Biology, 2021, págs. 1–21. 3.1.1, 3.1.2 |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
68 Páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Tecnológica de Pereira |
dc.publisher.program.none.fl_str_mv |
Ingeniería Eléctrica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.place.none.fl_str_mv |
Pereira |
publisher.none.fl_str_mv |
Universidad Tecnológica de Pereira |
institution |
Universidad Tecnológica de Pereira |
bitstream.url.fl_str_mv |
https://dspace7-utp.metabuscador.org/bitstreams/c8f9312b-cdae-4883-9751-6ae197583135/download https://dspace7-utp.metabuscador.org/bitstreams/7390190d-b55a-4cfa-a409-037121269079/download https://dspace7-utp.metabuscador.org/bitstreams/49d674b2-923c-48e9-af85-9eb41f51e516/download https://dspace7-utp.metabuscador.org/bitstreams/dd0f68ff-4057-4a5c-861e-9a726fa86883/download |
bitstream.checksum.fl_str_mv |
fca2bd5554b1dea3f84070255774096a 2f9959eaf5b71fae44bbf9ec84150c7a 081d9c0defde04c7b7d7fd5da5a3c789 5ea36557a21fcd9930da935702bcddbb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad Tecnológica de Pereira |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1814022009599819776 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 dehttps://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessHolguín Londoño, Germán AndrésJiménez Mejía, Yeison Stiven2024-02-05T19:47:08Z2024-02-05T19:47:08Z2023https://hdl.handle.net/11059/14931Universidad Tecnológica de PereiraRepositorio Institucional Universidad Tecnológica de Pereirahttps://repositorio.utp.edu.co/homeEn este documento se lleva a cabo un sistema de visión por computador para la clasificación de estados de madurez de frutas utilizando imágenes hiperespectrales (HSI) y redes neuronales convolucionales (CNN). Para dicha tarea se evalúan tres frutas: aguacate, kiwi y papaya. Las HSI fueron captadas en los rangos visible e infrarrojo cercano del espectro electromagnético. Los estados de madurez se clasifican en tres clases: inmaduro, maduro y sobremaduro. Además, para la clasificación se utilizan dos arquitecturas de CNN populares, AlexNet y ResNet50, y se propone una CNN para dicha tarea. La CNN propuesta muestra resultados prometedores y compite fuertemente con las otras dos CNN. Con esto se logra determinar que el sistema es adecuado para ser aplicado a tareas agroindustriales.This document presents a computer vision system for classifying fruit ripeness states using hyperspectral images (HSI) and Convolutional Neural Networks (CNN). Three fruits— avocado, kiwi, and papaya—are evaluated for this task. The HSI images were captured in the visible and near-infrared ranges of the electromagnetic spectrum. Ripeness states are classified into three classes: immature, ripe, and overripe. Additionally, two popular CNN architectures, AlexNet and ResNet50, are employed for classification, alongside a proposed CNN for this task. The proposed CNN demonstrates promising results and competes strongly with the other two CNN architectures. This determines that the system is suitable for application in agro-industrial tasks.CONTENIDO pág. 1. INTRODUCCIÓN 11 1.1. DEFINICIÓNDELPROBLEMA . . . . . . . . . . . . . . . . . . . . . 11 1.2. JUSTIFICACIÓN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3. OBJETIVOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.1. ObjetivoGeneral . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3.2. ObjetivosEspecíficos . . . . . . . . . . . . . . . . . . . . . . . . 16 2. ESTADODELARTE 17 3.MARCOTEÓRICO 21 3.1. MADURACIÓNDELAFRUTA . . . . . . . . . . . . . . . . . . . . . 21 3.1.1. Frutosclimatéricos . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.2. Frutosnoclimatéricos . . . . . . . . . . . . . . . . . . . . . . . 22 3.2. IMÁGENESHIPERESPECTRALES . . . . . . . . . . . . . . . . . . . 22 3.3. VISIÓNPORCOMPUTADOR . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1. Aprendizajesupervisado . . . . . . . . . . . . . . . . . . . . . . 26 3.3.2. Aprendizajenosupervisado . . . . . . . . . . . . . . . . . . . . 27 3.4. APRENDIZAJEPROFUNDO. . . . . . . . . . . . . . . . . . . . . . . 28 3.4.1. Redesneuronalesconvolucionales(CNN) . . . . . . . . . . . . . 30 3.4.2. ArquitecturasdeCNN . . . . . . . . . . . . . . . . . . . . . . . 31 4. SISTEMADECLASIFICACIÓN 33 4.1. DATASET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2. FRAMEWORK(PyTorch) . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3. ARQUITECTURASDECNN. . . . . . . . . . . . . . . . . . . . . . . 38 4.3.1. AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.2. ResNet50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.3. Modelopropuesto(HSI-ConvNet) . . . . . . . . . . . . . . . . . 41 5. EVALUACIÓNDELSISTEMA 45 5.1. EXACTITUD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2. PÉRDIDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3. MATRIZDECONFUSIÓN . . . . . . . . . . . . . . . . . . . . . . . . 46 6. EXPERIMENTOSYRESULTADOS 49 6.1. EXPERIMENTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2. RESULTADOS(HSI-ConvNet) . . . . . . . . . . . . . . . . . . . . . . 49 6.2.1. Aguacate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2.2. Kiwi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 6.2.3. Papaya. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7. CONCLUSIONESYRECOMENDACIONES 55 7.1. CONCLUSIONES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.2. RECOMENDACIONES . . . . . . . . . . . . . . . . . . . . . . . . . . 56 BIBLIOGRAFÍA 57PregradoIngeniero(a) Electricista68 Páginasapplication/pdfspaUniversidad Tecnológica de PereiraIngeniería EléctricaFacultad de IngenieríasPereira000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computaciónAlgoritmos de aprendizaje profundoProcesamiento de imágenes hiperespectralesReconocimiento de patronesAprendizaje profundoEstados de madurezInteligencia artificialClasificación automática de estados de madurez de frutas utilizando imágenes hiperespectrales y redes neuronales convolucionales profundasTrabajo de grado - Pregradoinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesis[1] MUNIRATHINAM, Sathyan. Industry 4.0: Industrial internet of things (IIOT). En: Advances in computers, tomo 117. Elsevier, 2020, págs. 129–164. 1[2] QUIÑONES ORTEGA, Kevin David. Seguimiento visual de un manipulador se rial utilizando redes neuronales profundas. Proyecto fin de carrera. Facultad de Ingenierías. En: Universidad Tecnológica de Pereira, 2023. 1, 15[3] WANG, Lizhi, et al. HyperReconNet: Joint Coded Aperture Optimization and Image Reconstruction for Compressive Hyperspectral Imaging. En: IEEE Transac tions on Image Processing, tomo 28, No 5, 2019, págs. 2257–2270. 1[4] ONU. Desafíos globales: población. global-issues/population. 1.1[5] MATHIEU, Edouard y RODÉS-GUIRAO, Lucas. What are the sources for Our World in Data’s population estimates? En: Our World in Data, 2022. 1[6] MAJA, Mengistu M y AYANO, Samuel F. The impact of population growth on natural resources and farmers’ capacity to adapt to climate change in low-income countries. En: Earth Systems and Environment, tomo 5, 2021, págs. 271–283. 1.1[7] MITRI, George, et al. Evaluating exposure to land degradation in association with repetitive armed conflicts in North Lebanon using multi-temporal satellite data. En: Environmental monitoring and assessment, tomo 186, 2014, págs. 7655–7672. 1.1[8] MINAMBIENTE. Política para la gestión sostenible del suelo. Ministerio de Ambiente y Desarrollo Sostenible, 2016. ISBN 978-958-8901-24-4. 1.1[9] CONPES4021. Política nacional para el Control de la Deforestación y la Gestión Sostenible de los Bosques. En: Ministerio de Ambiente y Desarrollo Sostenible, 2020. 1.1[10] DNP. Política General de Ordenamiento Territorial. En: FEDESARROLLO: Cen tro de Investigación Económica y Social, 2019. 1.1[11] JAVAID, Mohd, et al. Enhancing smart farming through the applications of Agri culture 4.0 technologies. En: International Journal of Intelligent Networks, tomo 3, 2022, págs. 150–164. ISSN 2666-6030. 1.1[12] NATURALES, Recursos; DE RIESGOS PRODUCTIVOS, Gestión, et al. Hacia una agricultura sostenible, resiliente al clima y baja en emisiones. Región Andina. En: Hacia una agricultura sostenible, resiliente al clima y baja en carbono, 2022. 1.1[13] KUMAR, Indrajeet, et al. Opportunities of artificial intelligence and machine learning in the food industry. En: Journal of Food Quality, tomo 2021, 2021, págs. 1–10. 1.1[14] SMIDT, Hermanus Jacobus y JOKONYA, Osden. Factors affecting digital techno logy adoption by small-scale farmers in agriculture value chains (AVCs) in South Africa. En: Information Technology for Development, tomo 28, No 3, 2022, págs. 558–584. 1.1[15] ARAÚJO, Sara Oleiro, et al. Characterising the agriculture 4.0 landsca pe—emerging trends, challenges and opportunities. En: Agronomy, tomo 11, No 4, 2021, pág. 667. 1.1[16] HUSSAIN, Abid; PU, Hongbin y SUN, Da Wen. Innovative nondestructive imaging techniques for ripening and maturity of fruits– A review of recent applications. En: Trends in Food Science & Technology, tomo 72, 2018, págs. 144–152. ISSN 0924-2244. 1.1[17] CHANDRASEKARAN, Indurani, et al. Potential of Near-Infrared (NIR) Spec troscopy and Hyperspectral Imaging for Quality and Safety Assessment of Fruits: an Overview. En: Food Analytical Methods, tomo 12, 2019, págs. 2438–2458. ISSN 1936976X. 1.1, 2[18] KHAN, Atiya, et al. A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications. En: Ecological Informatics, tomo 69, 2022, pág. 101678. 1.1[19] RIZZO, Matteo, et al. Fruit ripeness classification: A survey. En: Artificial Intelli gence in Agriculture, 2023. 1.2, 3.1[20] AHERWADI, Nagnath, et al. Prediction of fruit maturity, quality, and its life using deep learning algorithms. En: Electronics, tomo 11, No 24, 2022, pág. 4100. 1.2[21] BENELLI, Alessandro, et al. Ripeness evaluation of kiwifruit by hyperspectral imaging. tomo 223. Elsevier, 2022, págs. 42–52. 1.2, 2, 2, 3.1[22] HUSSAIN, Abid; PU, Hongbin ySUN,Da-Wen. Innovative nondestructive imaging techniques for ripening and maturity of fruits–a review of recent applications. En: Trends in Food Science & Technology, tomo 72, 2018, págs. 144–152. 1.2, 2[23] SUN, Da Wen. Hyperspectral Imaging for Food Quality Analysis and Control. 1a edición. Elsevier Inc., 2010. ISBN 978-0-12-374753-2. 2, 3.2, 1[24] VARGA, Leon Amadeus; MAKOWSKI, Jan y ZELL, Andreas. Measuring the Ripeness of Fruit with Hyperspectral Imaging and Deep Learning. En: 2021 Inter national Joint Conference on Neural Networks (IJCNN), 2021, págs. 1–8. 2, 4.1, 4.1, 8[25] ELMASRY, Gamal, et al. Hyperspectral imaging for nondestructive determina tion of some quality attributes for strawberry. En: Journal of Food Engineering, tomo 81, 2007, págs. 98–107. ISSN 02608774. 2[26] SAHU, Priyanka, et al. A Systematic Literature Review of Machine Learning Techniques Deployed in Agriculture: A Case Study of Banana Crop. En: IEEE Access, tomo 10, 2022, págs. 87333–87360. 2[27] MAGABILIN, Ma. Christina V.; FAJARDO, Arnel C. y MEDINA, Ruji P. Opti mal Ripeness Classification of the Philippine Guyabano Fruit using Deep Learning. En: 2022 Second International Conference on Power, Control and Computing Tech nologies (ICPC2T), 2022, págs. 1–5. 3.1[28] HAN, Yifei, et al. Predicting the ripening time of ‘Hass’ and ‘Shepard’avocado fruit by hyperspectral imaging. En: Precision Agriculture, 2023, págs. 1–17. 3.1[29] THAKUR, Rucha, et al. An Innovative Approach For Fruit Ripeness Classifica tion. En: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), 2020, págs. 550–554. 3.1[30] KOU, Xiaohong, et al. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. En: Plant Molecular Biology, 2021, págs. 1–21. 3.1.1, 3.1.2PublicationORIGINALTRABAJO DE GRADO.pdfTRABAJO DE GRADO.pdfapplication/pdf1167437https://dspace7-utp.metabuscador.org/bitstreams/c8f9312b-cdae-4883-9751-6ae197583135/downloadfca2bd5554b1dea3f84070255774096aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://dspace7-utp.metabuscador.org/bitstreams/7390190d-b55a-4cfa-a409-037121269079/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTTRABAJO DE GRADO.pdf.txtTRABAJO DE GRADO.pdf.txtExtracted texttext/plain78142https://dspace7-utp.metabuscador.org/bitstreams/49d674b2-923c-48e9-af85-9eb41f51e516/download081d9c0defde04c7b7d7fd5da5a3c789MD53THUMBNAILTRABAJO DE GRADO.pdf.jpgTRABAJO DE GRADO.pdf.jpgGenerated Thumbnailimage/jpeg7544https://dspace7-utp.metabuscador.org/bitstreams/dd0f68ff-4057-4a5c-861e-9a726fa86883/download5ea36557a21fcd9930da935702bcddbbMD5411059/14931oai:dspace7-utp.metabuscador.org:11059/149312024-09-05 17:18:59.902https://creativecommons.org/licenses/by-nc-nd/4.0/Manifiesto (Manifestamos) en este documento la voluntad de autorizar a la Biblioteca Jorge Roa Martínez de la Universidad Tecnológica de Pereira la publicación en el Repositorio institucional (http://biblioteca.utp.edu.co), la versión electrónica de la OBRA titulada: ________________________________________________________________________________________________ ________________________________________________________________________________________________ ________________________________________________________________________________________________ La Universidad Tecnológica de Pereira, entidad académica sin ánimo de lucro, queda por lo tanto facultada para ejercer plenamente la autorización anteriormente descrita en su actividad ordinaria de investigación, docencia y publicación. La autorización otorgada se ajusta a lo que establece la Ley 23 de 1982. Con todo, en mi (nuestra) condición de autor (es) me (nos) reservo (reservamos) los derechos morales de la OBRA antes citada con arreglo al artículo 30 deopen.accesshttps://dspace7-utp.metabuscador.orgRepositorio de la Universidad Tecnológica de Pereirabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |