In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors
In this work, we report on in-substrate passive components using a high performance glass interposer and through glass via (TGV) technology and a multi-layer superlattice conductor architecture. Minimal RF loss is achieved using low dielectric loss glass substrates and superlattice conductors featur...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8982
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8982
- Palabra clave:
- Complementary split ring resonator
Cu/NiFe nano-superlattice conductors
Glass interposer technology
Skin effect suppression
Through glass via
Bandpass filters
Dielectric losses
Eddy current testing
Glass
Insertion losses
Network components
Optical resonators
Resonators
Substrate integrated waveguides
Waveguide filters
Waveguides
Complementary split ring resonators
Conductor architectures
Glass substrates
Half-mode substrate integrated waveguides
Low dielectric loss
Negative permeability
Superlattice approach
Through glass via
Substrates
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_f857bd510d1b2e75f193cf998fc3403a |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8982 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors |
title |
In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors |
spellingShingle |
In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors Complementary split ring resonator Cu/NiFe nano-superlattice conductors Glass interposer technology Skin effect suppression Through glass via Bandpass filters Dielectric losses Eddy current testing Glass Insertion losses Network components Optical resonators Resonators Substrate integrated waveguides Waveguide filters Waveguides Complementary split ring resonators Conductor architectures Glass substrates Half-mode substrate integrated waveguides Low dielectric loss Negative permeability Superlattice approach Through glass via Substrates |
title_short |
In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors |
title_full |
In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors |
title_fullStr |
In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors |
title_full_unstemmed |
In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors |
title_sort |
In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors |
dc.subject.keywords.none.fl_str_mv |
Complementary split ring resonator Cu/NiFe nano-superlattice conductors Glass interposer technology Skin effect suppression Through glass via Bandpass filters Dielectric losses Eddy current testing Glass Insertion losses Network components Optical resonators Resonators Substrate integrated waveguides Waveguide filters Waveguides Complementary split ring resonators Conductor architectures Glass substrates Half-mode substrate integrated waveguides Low dielectric loss Negative permeability Superlattice approach Through glass via Substrates |
topic |
Complementary split ring resonator Cu/NiFe nano-superlattice conductors Glass interposer technology Skin effect suppression Through glass via Bandpass filters Dielectric losses Eddy current testing Glass Insertion losses Network components Optical resonators Resonators Substrate integrated waveguides Waveguide filters Waveguides Complementary split ring resonators Conductor architectures Glass substrates Half-mode substrate integrated waveguides Low dielectric loss Negative permeability Superlattice approach Through glass via Substrates |
description |
In this work, we report on in-substrate passive components using a high performance glass interposer and through glass via (TGV) technology and a multi-layer superlattice conductor architecture. Minimal RF loss is achieved using low dielectric loss glass substrates and superlattice conductors featuring skin effect suppression. Half mode substrate integrated waveguide (HMSIW) resonators and two-pole bandpass filters, embedded inside a glass interposer substrate, are used as test vehicles for the demonstration of insertion loss improvement in K-band. The utilized conductor is made of 20 layers of Cu/NiFe with each pair of 360 nm/30 nm, respectively, where NiFe layers with negative permeability in frequency range of interest are used for eddy current cancelling and improving the conductor loss. Control devices using the same glass substrate and conductor made of pure copper are fabricated for comparison purposes. The glass interposer substrate (SGW3, Corning Incorporated) has a thickness of 0.13 mm and the TGV's with a diameter of 0.08 mm. Up to 0.3 dB reduction in the insertion loss is achieved by using the proposed superlattice approach on glass substrates. © 2016 IEEE. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:42Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:42Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings - Electronic Components and Technology Conference; Vol. 2016-August, pp. 1322-1328 |
dc.identifier.isbn.none.fl_str_mv |
9781509012039 |
dc.identifier.issn.none.fl_str_mv |
05695503 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8982 |
dc.identifier.doi.none.fl_str_mv |
10.1109/ECTC.2016.249 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56297560700 36698427600 6601969625 7402126778 |
identifier_str_mv |
Proceedings - Electronic Components and Technology Conference; Vol. 2016-August, pp. 1322-1328 9781509012039 05695503 10.1109/ECTC.2016.249 Universidad Tecnológica de Bolívar Repositorio UTB 56297560700 36698427600 6601969625 7402126778 |
url |
https://hdl.handle.net/20.500.12585/8982 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
31 May 2016 through 3 June 2016 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84987808849&doi=10.1109%2fECTC.2016.249&partnerID=40&md5=f01d2e5b2bb4aa875c10b862895a0343 Scopus2-s2.0-84987808849 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
66th IEEE Electronic Components and Technology Conference, ECTC 2016 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8982/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021734181896192 |
spelling |
2020-03-26T16:32:42Z2020-03-26T16:32:42Z2016Proceedings - Electronic Components and Technology Conference; Vol. 2016-August, pp. 1322-1328978150901203905695503https://hdl.handle.net/20.500.12585/898210.1109/ECTC.2016.249Universidad Tecnológica de BolívarRepositorio UTB562975607003669842760066019696257402126778In this work, we report on in-substrate passive components using a high performance glass interposer and through glass via (TGV) technology and a multi-layer superlattice conductor architecture. Minimal RF loss is achieved using low dielectric loss glass substrates and superlattice conductors featuring skin effect suppression. Half mode substrate integrated waveguide (HMSIW) resonators and two-pole bandpass filters, embedded inside a glass interposer substrate, are used as test vehicles for the demonstration of insertion loss improvement in K-band. The utilized conductor is made of 20 layers of Cu/NiFe with each pair of 360 nm/30 nm, respectively, where NiFe layers with negative permeability in frequency range of interest are used for eddy current cancelling and improving the conductor loss. Control devices using the same glass substrate and conductor made of pure copper are fabricated for comparison purposes. The glass interposer substrate (SGW3, Corning Incorporated) has a thickness of 0.13 mm and the TGV's with a diameter of 0.08 mm. Up to 0.3 dB reduction in the insertion loss is achieved by using the proposed superlattice approach on glass substrates. © 2016 IEEE.IEEE Components, Packaging, and Manufacturing Technology (CPMT) SocietyRecurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84987808849&doi=10.1109%2fECTC.2016.249&partnerID=40&md5=f01d2e5b2bb4aa875c10b862895a0343Scopus2-s2.0-8498780884966th IEEE Electronic Components and Technology Conference, ECTC 2016In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductorsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fComplementary split ring resonatorCu/NiFe nano-superlattice conductorsGlass interposer technologySkin effect suppressionThrough glass viaBandpass filtersDielectric lossesEddy current testingGlassInsertion lossesNetwork componentsOptical resonatorsResonatorsSubstrate integrated waveguidesWaveguide filtersWaveguidesComplementary split ring resonatorsConductor architecturesGlass substratesHalf-mode substrate integrated waveguidesLow dielectric lossNegative permeabilitySuperlattice approachThrough glass viaSubstrates31 May 2016 through 3 June 2016Rahimi A.Senior D.E.Shorey A.Yoon, Y.K.Sukumaran, D.V., Bandyopadhyay, T., Chen, Q., Kumbhat, N., Liu, F., Pucha, R., Sato, Y., Tummala, K., Design, Fabrication and characterization of low-cost glass interposers with fin-pitch through-package-vias (2011) Proc. of 61st Electron. Compon. Technol. Conf. (ECTC), , Lake Buena Vista, FL May 31-June 3Yook, J.M., Kim, D., Kim, J.C., High performance ipds and tgv interposer technology using the photosensitive glass (2014) Proc. of Elec. Comp. and Technology Conf. (ECTC) 2014, , Lake Buena Vista, FL MayRahimi, A., Yoon, Y.K., Integrated low loss rf passive components based on glass interposer technology (2015) Proc. of Elec. Comp. and Technology Conf. (ECTC) 2015, , San Diego, CA, MayDunn, T., Lee, C., Tronolone, M., Shorey, A., Metrology for characterization of wafer thickness uniformity during 3d-ic processing Courtesy of Corning Incorporated, , www.corning.com/semiglassRahimi, A., Wu, J., Cheng, X., Yoon, Y.K., Radial superlattice conductors with eddy current suppression for microwave applications (2015) Journal of Applied Physics, 117 (11). , MarBernard, P.A., Gautray, J.M., Measurement of dielectric constant using a microstrip ring resonator (1991) IEEE Trans. Microw. Theory Tech, 39 (3), pp. 592-595. , MarKim, C., Yoon, Y.K., High frequency characterization and analytical modeling of through glass via (tgv) for 3d thin-film interposer and mems packaging (2013) Proc. of 63rd Electron. Compon. Technol. Conf. (ECTC), , Las Vegas, NV, May 28-31Dong, Y., Yang, T., Itoh, T., Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters (2009) IEEE Trans. Microw. Theory Tech, 57 (9), pp. 2211-2223. , AugSenior, D.E., Cheng, X., Machado, M., Yoon, Y.K., Single and dual band bandpass filters using complementary split ring resonator loaded half mode substrate integrated waveguide (2010) Antennas and Propagation Society International Symposium (APSURSI 2010 IEEE, Toronto, on, pp. 1-4Kim, C., Senior, D.E., Shorey, A., Kim, H.J., Thomas, W., Yoon, Y.K., Through-glass interposer integrated high quality rf components (2014) Proc. of Elec. Comp. and Technology Conf. (ECTC) 2014, , Lake Buena Vista, FL, MayWang, B.K., Chen, Y.A., Shorey, A., Piech, G., Thin glass substrate development and integration for through glass vias (TGV) with copper (Cu) interconnections (2012) 7th Int. Microsystem, Packaging, Assembly and Circuit Tech. Conf, , Taipei, Thailand 24-26 Octhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8982/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8982oai:repositorio.utb.edu.co:20.500.12585/89822023-04-24 08:52:13.725Repositorio Institucional UTBrepositorioutb@utb.edu.co |