In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors

In this work, we report on in-substrate passive components using a high performance glass interposer and through glass via (TGV) technology and a multi-layer superlattice conductor architecture. Minimal RF loss is achieved using low dielectric loss glass substrates and superlattice conductors featur...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8982
Acceso en línea:
https://hdl.handle.net/20.500.12585/8982
Palabra clave:
Complementary split ring resonator
Cu/NiFe nano-superlattice conductors
Glass interposer technology
Skin effect suppression
Through glass via
Bandpass filters
Dielectric losses
Eddy current testing
Glass
Insertion losses
Network components
Optical resonators
Resonators
Substrate integrated waveguides
Waveguide filters
Waveguides
Complementary split ring resonators
Conductor architectures
Glass substrates
Half-mode substrate integrated waveguides
Low dielectric loss
Negative permeability
Superlattice approach
Through glass via
Substrates
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_f857bd510d1b2e75f193cf998fc3403a
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8982
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors
title In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors
spellingShingle In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors
Complementary split ring resonator
Cu/NiFe nano-superlattice conductors
Glass interposer technology
Skin effect suppression
Through glass via
Bandpass filters
Dielectric losses
Eddy current testing
Glass
Insertion losses
Network components
Optical resonators
Resonators
Substrate integrated waveguides
Waveguide filters
Waveguides
Complementary split ring resonators
Conductor architectures
Glass substrates
Half-mode substrate integrated waveguides
Low dielectric loss
Negative permeability
Superlattice approach
Through glass via
Substrates
title_short In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors
title_full In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors
title_fullStr In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors
title_full_unstemmed In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors
title_sort In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductors
dc.subject.keywords.none.fl_str_mv Complementary split ring resonator
Cu/NiFe nano-superlattice conductors
Glass interposer technology
Skin effect suppression
Through glass via
Bandpass filters
Dielectric losses
Eddy current testing
Glass
Insertion losses
Network components
Optical resonators
Resonators
Substrate integrated waveguides
Waveguide filters
Waveguides
Complementary split ring resonators
Conductor architectures
Glass substrates
Half-mode substrate integrated waveguides
Low dielectric loss
Negative permeability
Superlattice approach
Through glass via
Substrates
topic Complementary split ring resonator
Cu/NiFe nano-superlattice conductors
Glass interposer technology
Skin effect suppression
Through glass via
Bandpass filters
Dielectric losses
Eddy current testing
Glass
Insertion losses
Network components
Optical resonators
Resonators
Substrate integrated waveguides
Waveguide filters
Waveguides
Complementary split ring resonators
Conductor architectures
Glass substrates
Half-mode substrate integrated waveguides
Low dielectric loss
Negative permeability
Superlattice approach
Through glass via
Substrates
description In this work, we report on in-substrate passive components using a high performance glass interposer and through glass via (TGV) technology and a multi-layer superlattice conductor architecture. Minimal RF loss is achieved using low dielectric loss glass substrates and superlattice conductors featuring skin effect suppression. Half mode substrate integrated waveguide (HMSIW) resonators and two-pole bandpass filters, embedded inside a glass interposer substrate, are used as test vehicles for the demonstration of insertion loss improvement in K-band. The utilized conductor is made of 20 layers of Cu/NiFe with each pair of 360 nm/30 nm, respectively, where NiFe layers with negative permeability in frequency range of interest are used for eddy current cancelling and improving the conductor loss. Control devices using the same glass substrate and conductor made of pure copper are fabricated for comparison purposes. The glass interposer substrate (SGW3, Corning Incorporated) has a thickness of 0.13 mm and the TGV's with a diameter of 0.08 mm. Up to 0.3 dB reduction in the insertion loss is achieved by using the proposed superlattice approach on glass substrates. © 2016 IEEE.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:42Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:42Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Proceedings - Electronic Components and Technology Conference; Vol. 2016-August, pp. 1322-1328
dc.identifier.isbn.none.fl_str_mv 9781509012039
dc.identifier.issn.none.fl_str_mv 05695503
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8982
dc.identifier.doi.none.fl_str_mv 10.1109/ECTC.2016.249
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56297560700
36698427600
6601969625
7402126778
identifier_str_mv Proceedings - Electronic Components and Technology Conference; Vol. 2016-August, pp. 1322-1328
9781509012039
05695503
10.1109/ECTC.2016.249
Universidad Tecnológica de Bolívar
Repositorio UTB
56297560700
36698427600
6601969625
7402126778
url https://hdl.handle.net/20.500.12585/8982
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 31 May 2016 through 3 June 2016
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84987808849&doi=10.1109%2fECTC.2016.249&partnerID=40&md5=f01d2e5b2bb4aa875c10b862895a0343
Scopus2-s2.0-84987808849
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 66th IEEE Electronic Components and Technology Conference, ECTC 2016
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8982/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021734181896192
spelling 2020-03-26T16:32:42Z2020-03-26T16:32:42Z2016Proceedings - Electronic Components and Technology Conference; Vol. 2016-August, pp. 1322-1328978150901203905695503https://hdl.handle.net/20.500.12585/898210.1109/ECTC.2016.249Universidad Tecnológica de BolívarRepositorio UTB562975607003669842760066019696257402126778In this work, we report on in-substrate passive components using a high performance glass interposer and through glass via (TGV) technology and a multi-layer superlattice conductor architecture. Minimal RF loss is achieved using low dielectric loss glass substrates and superlattice conductors featuring skin effect suppression. Half mode substrate integrated waveguide (HMSIW) resonators and two-pole bandpass filters, embedded inside a glass interposer substrate, are used as test vehicles for the demonstration of insertion loss improvement in K-band. The utilized conductor is made of 20 layers of Cu/NiFe with each pair of 360 nm/30 nm, respectively, where NiFe layers with negative permeability in frequency range of interest are used for eddy current cancelling and improving the conductor loss. Control devices using the same glass substrate and conductor made of pure copper are fabricated for comparison purposes. The glass interposer substrate (SGW3, Corning Incorporated) has a thickness of 0.13 mm and the TGV's with a diameter of 0.08 mm. Up to 0.3 dB reduction in the insertion loss is achieved by using the proposed superlattice approach on glass substrates. © 2016 IEEE.IEEE Components, Packaging, and Manufacturing Technology (CPMT) SocietyRecurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84987808849&doi=10.1109%2fECTC.2016.249&partnerID=40&md5=f01d2e5b2bb4aa875c10b862895a0343Scopus2-s2.0-8498780884966th IEEE Electronic Components and Technology Conference, ECTC 2016In-Substrate Resonators and Bandpass Filters with Improved Insertion Loss in K-Band Utilizing Low Loss Glass Interposer Technology and Superlattice Conductorsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fComplementary split ring resonatorCu/NiFe nano-superlattice conductorsGlass interposer technologySkin effect suppressionThrough glass viaBandpass filtersDielectric lossesEddy current testingGlassInsertion lossesNetwork componentsOptical resonatorsResonatorsSubstrate integrated waveguidesWaveguide filtersWaveguidesComplementary split ring resonatorsConductor architecturesGlass substratesHalf-mode substrate integrated waveguidesLow dielectric lossNegative permeabilitySuperlattice approachThrough glass viaSubstrates31 May 2016 through 3 June 2016Rahimi A.Senior D.E.Shorey A.Yoon, Y.K.Sukumaran, D.V., Bandyopadhyay, T., Chen, Q., Kumbhat, N., Liu, F., Pucha, R., Sato, Y., Tummala, K., Design, Fabrication and characterization of low-cost glass interposers with fin-pitch through-package-vias (2011) Proc. of 61st Electron. Compon. Technol. Conf. (ECTC), , Lake Buena Vista, FL May 31-June 3Yook, J.M., Kim, D., Kim, J.C., High performance ipds and tgv interposer technology using the photosensitive glass (2014) Proc. of Elec. Comp. and Technology Conf. (ECTC) 2014, , Lake Buena Vista, FL MayRahimi, A., Yoon, Y.K., Integrated low loss rf passive components based on glass interposer technology (2015) Proc. of Elec. Comp. and Technology Conf. (ECTC) 2015, , San Diego, CA, MayDunn, T., Lee, C., Tronolone, M., Shorey, A., Metrology for characterization of wafer thickness uniformity during 3d-ic processing Courtesy of Corning Incorporated, , www.corning.com/semiglassRahimi, A., Wu, J., Cheng, X., Yoon, Y.K., Radial superlattice conductors with eddy current suppression for microwave applications (2015) Journal of Applied Physics, 117 (11). , MarBernard, P.A., Gautray, J.M., Measurement of dielectric constant using a microstrip ring resonator (1991) IEEE Trans. Microw. Theory Tech, 39 (3), pp. 592-595. , MarKim, C., Yoon, Y.K., High frequency characterization and analytical modeling of through glass via (tgv) for 3d thin-film interposer and mems packaging (2013) Proc. of 63rd Electron. Compon. Technol. Conf. (ECTC), , Las Vegas, NV, May 28-31Dong, Y., Yang, T., Itoh, T., Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters (2009) IEEE Trans. Microw. Theory Tech, 57 (9), pp. 2211-2223. , AugSenior, D.E., Cheng, X., Machado, M., Yoon, Y.K., Single and dual band bandpass filters using complementary split ring resonator loaded half mode substrate integrated waveguide (2010) Antennas and Propagation Society International Symposium (APSURSI 2010 IEEE, Toronto, on, pp. 1-4Kim, C., Senior, D.E., Shorey, A., Kim, H.J., Thomas, W., Yoon, Y.K., Through-glass interposer integrated high quality rf components (2014) Proc. of Elec. Comp. and Technology Conf. (ECTC) 2014, , Lake Buena Vista, FL, MayWang, B.K., Chen, Y.A., Shorey, A., Piech, G., Thin glass substrate development and integration for through glass vias (TGV) with copper (Cu) interconnections (2012) 7th Int. Microsystem, Packaging, Assembly and Circuit Tech. Conf, , Taipei, Thailand 24-26 Octhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8982/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8982oai:repositorio.utb.edu.co:20.500.12585/89822023-04-24 08:52:13.725Repositorio Institucional UTBrepositorioutb@utb.edu.co