Hierarchical agglomerative clustering of time-warped series
We have developed a procedure for hierarchical agglomerative clustering of time series data. To measure the dissimilarity between these data, we use classically the Euclidean distance or we apply the costs of the series nonlinear alignment (time warping). In the latter approach, we use the classical...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8913
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8913
- Palabra clave:
- DTW
Hierarchical clustering
Single/complete linkage
Cluster analysis
Time series
Dissimilarity measures
Effective measures
Euclidean distance
Hier-archical clustering
Hierarchical agglomerative clustering
Single/complete linkage
Time-series data
Visual similarity
Costs
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/