A machine learning model for occupancy rates and demand forecasting in the hospitality industry

Occupancy rate forecasting is a very important step in the decision-making process of hotel planners and managers. Popular strategies as Revenue Management feature forecasting as a vital activity for dynamic pricing, and without accurate forecasting, errors in pricing will negatively impact hotel fi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8994
Acceso en línea:
https://hdl.handle.net/20.500.12585/8994
Palabra clave:
Forecasting
Hotel occupancy. Demand
Kernel Ridge Regression
Machine learning
Neural Networks
Ridge regression
Artificial intelligence
Costs
Decision making
Economics
Hotels
Learning systems
Neural networks
Regression analysis
Decision making process
Financial performance
Kernel ridge regressions
Machine learning models
Machine learning techniques
Mean absolute percentage error
Ridge regression
Specialized software
Forecasting
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_df81a6caef5afc3f7a657327d2f370df
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8994
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv A machine learning model for occupancy rates and demand forecasting in the hospitality industry
title A machine learning model for occupancy rates and demand forecasting in the hospitality industry
spellingShingle A machine learning model for occupancy rates and demand forecasting in the hospitality industry
Forecasting
Hotel occupancy. Demand
Kernel Ridge Regression
Machine learning
Neural Networks
Ridge regression
Artificial intelligence
Costs
Decision making
Economics
Hotels
Learning systems
Neural networks
Regression analysis
Decision making process
Financial performance
Kernel ridge regressions
Machine learning models
Machine learning techniques
Mean absolute percentage error
Ridge regression
Specialized software
Forecasting
title_short A machine learning model for occupancy rates and demand forecasting in the hospitality industry
title_full A machine learning model for occupancy rates and demand forecasting in the hospitality industry
title_fullStr A machine learning model for occupancy rates and demand forecasting in the hospitality industry
title_full_unstemmed A machine learning model for occupancy rates and demand forecasting in the hospitality industry
title_sort A machine learning model for occupancy rates and demand forecasting in the hospitality industry
dc.contributor.editor.none.fl_str_mv Escalante H.J.
Montes-y-Gomez M.
Segura A.
de Dios Murillo J.
dc.subject.keywords.none.fl_str_mv Forecasting
Hotel occupancy. Demand
Kernel Ridge Regression
Machine learning
Neural Networks
Ridge regression
Artificial intelligence
Costs
Decision making
Economics
Hotels
Learning systems
Neural networks
Regression analysis
Decision making process
Financial performance
Kernel ridge regressions
Machine learning models
Machine learning techniques
Mean absolute percentage error
Ridge regression
Specialized software
Forecasting
topic Forecasting
Hotel occupancy. Demand
Kernel Ridge Regression
Machine learning
Neural Networks
Ridge regression
Artificial intelligence
Costs
Decision making
Economics
Hotels
Learning systems
Neural networks
Regression analysis
Decision making process
Financial performance
Kernel ridge regressions
Machine learning models
Machine learning techniques
Mean absolute percentage error
Ridge regression
Specialized software
Forecasting
description Occupancy rate forecasting is a very important step in the decision-making process of hotel planners and managers. Popular strategies as Revenue Management feature forecasting as a vital activity for dynamic pricing, and without accurate forecasting, errors in pricing will negatively impact hotel financial performance. However, having accurate enough forecasts is no simple task for a wealth of reasons, as the inherent variability of the market, lack of personnel with statistical skills, and the high cost of specialized software. In this paper, several machine learning techniques were surveyed in order to construct models to forecast daily occupancy rates for a hotel, given historical records of bookings and occupation. Several approaches related to dataset construction and model validation are discussed. The results obtained in terms of the Mean Absolute Percentage Error (MAPE) are promising, and support the use of machine learning models as a tool to help solve the problem of occupancy rates and demand forecasting. © Springer International Publishing AG 2016.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:44Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:44Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 201-211
dc.identifier.isbn.none.fl_str_mv 9783319479545
dc.identifier.issn.none.fl_str_mv 03029743
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8994
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-47955-2_17
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 55782426500
57191841375
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 201-211
9783319479545
03029743
10.1007/978-3-319-47955-2_17
Universidad Tecnológica de Bolívar
Repositorio UTB
55782426500
57191841375
url https://hdl.handle.net/20.500.12585/8994
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 23 November 2016 through 25 November 2016
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994181326&doi=10.1007%2f978-3-319-47955-2_17&partnerID=40&md5=0e690b40469b675f34d98b3da10a4840
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8994/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021621754626048
spelling Escalante H.J.Montes-y-Gomez M.Segura A.de Dios Murillo J.Caicedo-Torres W.Payares F.2020-03-26T16:32:44Z2020-03-26T16:32:44Z2016Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 201-211978331947954503029743https://hdl.handle.net/20.500.12585/899410.1007/978-3-319-47955-2_17Universidad Tecnológica de BolívarRepositorio UTB5578242650057191841375Occupancy rate forecasting is a very important step in the decision-making process of hotel planners and managers. Popular strategies as Revenue Management feature forecasting as a vital activity for dynamic pricing, and without accurate forecasting, errors in pricing will negatively impact hotel financial performance. However, having accurate enough forecasts is no simple task for a wealth of reasons, as the inherent variability of the market, lack of personnel with statistical skills, and the high cost of specialized software. In this paper, several machine learning techniques were surveyed in order to construct models to forecast daily occupancy rates for a hotel, given historical records of bookings and occupation. Several approaches related to dataset construction and model validation are discussed. The results obtained in terms of the Mean Absolute Percentage Error (MAPE) are promising, and support the use of machine learning models as a tool to help solve the problem of occupancy rates and demand forecasting. © Springer International Publishing AG 2016.Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994181326&doi=10.1007%2f978-3-319-47955-2_17&partnerID=40&md5=0e690b40469b675f34d98b3da10a484015th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016A machine learning model for occupancy rates and demand forecasting in the hospitality industryinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fForecastingHotel occupancy. DemandKernel Ridge RegressionMachine learningNeural NetworksRidge regressionArtificial intelligenceCostsDecision makingEconomicsHotelsLearning systemsNeural networksRegression analysisDecision making processFinancial performanceKernel ridge regressionsMachine learning modelsMachine learning techniquesMean absolute percentage errorRidge regressionSpecialized softwareForecasting23 November 2016 through 25 November 2016http://www.rueckstiess.net/research/snippets/show/72d2363e, Accessed 04 May 2016Albanese, D., Visintainer, R., Merler, S., Riccadonna, S., Jurman, G., Furlanello, C., (2012) Mlpy: Machine Learning PythonAndrew, W.P., Cranage, D.A., Lee, C.K., Forecasting hotel occupancy rates with time series models: An empirical analysis (1990) J. Hospitality Tourism Res, 14 (2), pp. 173-182. , http://jht.sagepub.com/content/14/2/173.abstractBochkanov, S., ALGLIB, , http://alglib.net, Accessed 26 Apr 2016Broomhead, D., Lowe, D., Multivariable functional interpolation and adaptive networks (1988) Complex Syst, 2, pp. 321-355Cortes, C., Vapnik, V., Support-vector networks. (1995) Mach. Learn, 20 (3), pp. 273-297. , http://dx.doi.org/10.1007/BF00994018El-Gayar, N., Hendawi, A., Zakhary, A., El-Shishiny, H., A proposed decision support model for hotel room revenue management. (2008) ICGST Int. J. Artif. Intell. Mach. Learn, 8 (1), pp. 23-28Gilliland, M., Sglavo, U., Tashman, L., (2016) Business Forecasting: Practical Problems and Solutions, , Wiley, HobokenHoerl, A.E., Kennard, R.W., Ridge regression: Biased estimation for nonorthogonal problems (2000) Technometrics, 42 (1), pp. 80-86. , http://dx.doi.org/10.2307/1271436Law, R., Au, N., A neural network model to forecast Japanese demand for travel to Hong Kong (1999) Tourism Manag, 20 (1), pp. 89-97Lee, A.O., (1990) Airline Reservations Forecasting: Probabilistic and Statistical Models of the Booking Process., , Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MAMurphy, K.P., (2012) Machine Learning: A Probabilistic Perspective, , The MIT Press, CambridgePhumchusri, N., Mongkolku, P., Hotel room demand forecasting via observed reservation information (2012) Proceedings of the Asia Pacific Industrial Engineering & Management Systems Conference, pp. 1978-1985. , Kachitvichyanukul, V., Luong, H., Pitakaso, R. (eds.)Rajopadhye, M., Ghalia, M.B., Wang, P.P., Baker, T., Eister, C.V., Forecasting uncertain hotel room demand. (2001) Inf. Sci., 132 (1-4), pp. 1-11. , http://dx.doi.org/10.1016/S0020-0255(00)00082-7Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning internal representations by error propagation (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, pp. 318-362. , http://dl.acm.org/citation.cfm?id=104279.104293, MIT Press, CambridgeWeatherford, L.R., Kimes, S.E., A comparison of forecasting methods for hotel revenue management (2003) Int. J. Forecast, 19 (3), pp. 401-415Zakhary, A., El Gayar, N., Atiya, A.F., A comparative study of the pickup method and its variations using a simulated hotel reservation data. (2008) ICGST Int. J. Artif. Intell. Mach. Learn, 8, pp. 15-21http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8994/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8994oai:repositorio.utb.edu.co:20.500.12585/89942021-02-02 14:16:49.057Repositorio Institucional UTBrepositorioutb@utb.edu.co