A machine learning model for occupancy rates and demand forecasting in the hospitality industry
Occupancy rate forecasting is a very important step in the decision-making process of hotel planners and managers. Popular strategies as Revenue Management feature forecasting as a vital activity for dynamic pricing, and without accurate forecasting, errors in pricing will negatively impact hotel fi...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8994
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8994
- Palabra clave:
- Forecasting
Hotel occupancy. Demand
Kernel Ridge Regression
Machine learning
Neural Networks
Ridge regression
Artificial intelligence
Costs
Decision making
Economics
Hotels
Learning systems
Neural networks
Regression analysis
Decision making process
Financial performance
Kernel ridge regressions
Machine learning models
Machine learning techniques
Mean absolute percentage error
Ridge regression
Specialized software
Forecasting
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_df81a6caef5afc3f7a657327d2f370df |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8994 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
A machine learning model for occupancy rates and demand forecasting in the hospitality industry |
title |
A machine learning model for occupancy rates and demand forecasting in the hospitality industry |
spellingShingle |
A machine learning model for occupancy rates and demand forecasting in the hospitality industry Forecasting Hotel occupancy. Demand Kernel Ridge Regression Machine learning Neural Networks Ridge regression Artificial intelligence Costs Decision making Economics Hotels Learning systems Neural networks Regression analysis Decision making process Financial performance Kernel ridge regressions Machine learning models Machine learning techniques Mean absolute percentage error Ridge regression Specialized software Forecasting |
title_short |
A machine learning model for occupancy rates and demand forecasting in the hospitality industry |
title_full |
A machine learning model for occupancy rates and demand forecasting in the hospitality industry |
title_fullStr |
A machine learning model for occupancy rates and demand forecasting in the hospitality industry |
title_full_unstemmed |
A machine learning model for occupancy rates and demand forecasting in the hospitality industry |
title_sort |
A machine learning model for occupancy rates and demand forecasting in the hospitality industry |
dc.contributor.editor.none.fl_str_mv |
Escalante H.J. Montes-y-Gomez M. Segura A. de Dios Murillo J. |
dc.subject.keywords.none.fl_str_mv |
Forecasting Hotel occupancy. Demand Kernel Ridge Regression Machine learning Neural Networks Ridge regression Artificial intelligence Costs Decision making Economics Hotels Learning systems Neural networks Regression analysis Decision making process Financial performance Kernel ridge regressions Machine learning models Machine learning techniques Mean absolute percentage error Ridge regression Specialized software Forecasting |
topic |
Forecasting Hotel occupancy. Demand Kernel Ridge Regression Machine learning Neural Networks Ridge regression Artificial intelligence Costs Decision making Economics Hotels Learning systems Neural networks Regression analysis Decision making process Financial performance Kernel ridge regressions Machine learning models Machine learning techniques Mean absolute percentage error Ridge regression Specialized software Forecasting |
description |
Occupancy rate forecasting is a very important step in the decision-making process of hotel planners and managers. Popular strategies as Revenue Management feature forecasting as a vital activity for dynamic pricing, and without accurate forecasting, errors in pricing will negatively impact hotel financial performance. However, having accurate enough forecasts is no simple task for a wealth of reasons, as the inherent variability of the market, lack of personnel with statistical skills, and the high cost of specialized software. In this paper, several machine learning techniques were surveyed in order to construct models to forecast daily occupancy rates for a hotel, given historical records of bookings and occupation. Several approaches related to dataset construction and model validation are discussed. The results obtained in terms of the Mean Absolute Percentage Error (MAPE) are promising, and support the use of machine learning models as a tool to help solve the problem of occupancy rates and demand forecasting. © Springer International Publishing AG 2016. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:44Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:44Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 201-211 |
dc.identifier.isbn.none.fl_str_mv |
9783319479545 |
dc.identifier.issn.none.fl_str_mv |
03029743 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8994 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-319-47955-2_17 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
55782426500 57191841375 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 201-211 9783319479545 03029743 10.1007/978-3-319-47955-2_17 Universidad Tecnológica de Bolívar Repositorio UTB 55782426500 57191841375 |
url |
https://hdl.handle.net/20.500.12585/8994 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
23 November 2016 through 25 November 2016 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994181326&doi=10.1007%2f978-3-319-47955-2_17&partnerID=40&md5=0e690b40469b675f34d98b3da10a4840 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
15th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8994/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021621754626048 |
spelling |
Escalante H.J.Montes-y-Gomez M.Segura A.de Dios Murillo J.Caicedo-Torres W.Payares F.2020-03-26T16:32:44Z2020-03-26T16:32:44Z2016Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10022 LNAI, pp. 201-211978331947954503029743https://hdl.handle.net/20.500.12585/899410.1007/978-3-319-47955-2_17Universidad Tecnológica de BolívarRepositorio UTB5578242650057191841375Occupancy rate forecasting is a very important step in the decision-making process of hotel planners and managers. Popular strategies as Revenue Management feature forecasting as a vital activity for dynamic pricing, and without accurate forecasting, errors in pricing will negatively impact hotel financial performance. However, having accurate enough forecasts is no simple task for a wealth of reasons, as the inherent variability of the market, lack of personnel with statistical skills, and the high cost of specialized software. In this paper, several machine learning techniques were surveyed in order to construct models to forecast daily occupancy rates for a hotel, given historical records of bookings and occupation. Several approaches related to dataset construction and model validation are discussed. The results obtained in terms of the Mean Absolute Percentage Error (MAPE) are promising, and support the use of machine learning models as a tool to help solve the problem of occupancy rates and demand forecasting. © Springer International Publishing AG 2016.Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84994181326&doi=10.1007%2f978-3-319-47955-2_17&partnerID=40&md5=0e690b40469b675f34d98b3da10a484015th Ibero-American Conference on Advances in Artificial Intelligence, IBERAMIA 2016A machine learning model for occupancy rates and demand forecasting in the hospitality industryinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fForecastingHotel occupancy. DemandKernel Ridge RegressionMachine learningNeural NetworksRidge regressionArtificial intelligenceCostsDecision makingEconomicsHotelsLearning systemsNeural networksRegression analysisDecision making processFinancial performanceKernel ridge regressionsMachine learning modelsMachine learning techniquesMean absolute percentage errorRidge regressionSpecialized softwareForecasting23 November 2016 through 25 November 2016http://www.rueckstiess.net/research/snippets/show/72d2363e, Accessed 04 May 2016Albanese, D., Visintainer, R., Merler, S., Riccadonna, S., Jurman, G., Furlanello, C., (2012) Mlpy: Machine Learning PythonAndrew, W.P., Cranage, D.A., Lee, C.K., Forecasting hotel occupancy rates with time series models: An empirical analysis (1990) J. Hospitality Tourism Res, 14 (2), pp. 173-182. , http://jht.sagepub.com/content/14/2/173.abstractBochkanov, S., ALGLIB, , http://alglib.net, Accessed 26 Apr 2016Broomhead, D., Lowe, D., Multivariable functional interpolation and adaptive networks (1988) Complex Syst, 2, pp. 321-355Cortes, C., Vapnik, V., Support-vector networks. (1995) Mach. Learn, 20 (3), pp. 273-297. , http://dx.doi.org/10.1007/BF00994018El-Gayar, N., Hendawi, A., Zakhary, A., El-Shishiny, H., A proposed decision support model for hotel room revenue management. (2008) ICGST Int. J. Artif. Intell. Mach. Learn, 8 (1), pp. 23-28Gilliland, M., Sglavo, U., Tashman, L., (2016) Business Forecasting: Practical Problems and Solutions, , Wiley, HobokenHoerl, A.E., Kennard, R.W., Ridge regression: Biased estimation for nonorthogonal problems (2000) Technometrics, 42 (1), pp. 80-86. , http://dx.doi.org/10.2307/1271436Law, R., Au, N., A neural network model to forecast Japanese demand for travel to Hong Kong (1999) Tourism Manag, 20 (1), pp. 89-97Lee, A.O., (1990) Airline Reservations Forecasting: Probabilistic and Statistical Models of the Booking Process., , Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MAMurphy, K.P., (2012) Machine Learning: A Probabilistic Perspective, , The MIT Press, CambridgePhumchusri, N., Mongkolku, P., Hotel room demand forecasting via observed reservation information (2012) Proceedings of the Asia Pacific Industrial Engineering & Management Systems Conference, pp. 1978-1985. , Kachitvichyanukul, V., Luong, H., Pitakaso, R. (eds.)Rajopadhye, M., Ghalia, M.B., Wang, P.P., Baker, T., Eister, C.V., Forecasting uncertain hotel room demand. (2001) Inf. Sci., 132 (1-4), pp. 1-11. , http://dx.doi.org/10.1016/S0020-0255(00)00082-7Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning internal representations by error propagation (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, 1, pp. 318-362. , http://dl.acm.org/citation.cfm?id=104279.104293, MIT Press, CambridgeWeatherford, L.R., Kimes, S.E., A comparison of forecasting methods for hotel revenue management (2003) Int. J. Forecast, 19 (3), pp. 401-415Zakhary, A., El Gayar, N., Atiya, A.F., A comparative study of the pickup method and its variations using a simulated hotel reservation data. (2008) ICGST Int. J. Artif. Intell. Mach. Learn, 8, pp. 15-21http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8994/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8994oai:repositorio.utb.edu.co:20.500.12585/89942021-02-02 14:16:49.057Repositorio Institucional UTBrepositorioutb@utb.edu.co |