A machine learning model for occupancy rates and demand forecasting in the hospitality industry
Occupancy rate forecasting is a very important step in the decision-making process of hotel planners and managers. Popular strategies as Revenue Management feature forecasting as a vital activity for dynamic pricing, and without accurate forecasting, errors in pricing will negatively impact hotel fi...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8994
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8994
- Palabra clave:
- Forecasting
Hotel occupancy. Demand
Kernel Ridge Regression
Machine learning
Neural Networks
Ridge regression
Artificial intelligence
Costs
Decision making
Economics
Hotels
Learning systems
Neural networks
Regression analysis
Decision making process
Financial performance
Kernel ridge regressions
Machine learning models
Machine learning techniques
Mean absolute percentage error
Ridge regression
Specialized software
Forecasting
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/