Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function

This paper deals with the global stabilization of the reaction wheel pendulum (RWP) in the discrete-time domain. The discrete-inverse optimal control approach via a control Lyapunov function (CLF) is employed to make the stabilization task. The main advantages of using this control methodology can b...

Full description

Autores:
Montoya, Oscar Danilo
Gil-González, Walter
Domínguez Jiménez, Juan Antonio
Molina-Cabrera, Alexander
Giral-Ramírez, Diego Armando
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9544
Acceso en línea:
https://hdl.handle.net/20.500.12585/9544
https://www.mdpi.com/2073-8994/12/11/1771
Palabra clave:
Discrete-inverse optimal control
Global exponential stabilization
Reaction wheel pendulum
Parametric uncertainties
Discrete-affine systems
Cost functional
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_cb74f58367f708dd6b884847731014a0
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9544
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function
title Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function
spellingShingle Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function
Discrete-inverse optimal control
Global exponential stabilization
Reaction wheel pendulum
Parametric uncertainties
Discrete-affine systems
Cost functional
title_short Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function
title_full Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function
title_fullStr Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function
title_full_unstemmed Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function
title_sort Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov function
dc.creator.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Domínguez Jiménez, Juan Antonio
Molina-Cabrera, Alexander
Giral-Ramírez, Diego Armando
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Domínguez Jiménez, Juan Antonio
Molina-Cabrera, Alexander
Giral-Ramírez, Diego Armando
dc.subject.keywords.spa.fl_str_mv Discrete-inverse optimal control
Global exponential stabilization
Reaction wheel pendulum
Parametric uncertainties
Discrete-affine systems
Cost functional
topic Discrete-inverse optimal control
Global exponential stabilization
Reaction wheel pendulum
Parametric uncertainties
Discrete-affine systems
Cost functional
description This paper deals with the global stabilization of the reaction wheel pendulum (RWP) in the discrete-time domain. The discrete-inverse optimal control approach via a control Lyapunov function (CLF) is employed to make the stabilization task. The main advantages of using this control methodology can be summarized as follows: (i) it guarantees exponential stability in closed-loop operation, and (ii) the inverse control law is optimal since it minimizes the cost functional of the system. Numerical simulations demonstrate that the RWP is stabilized with the discrete-inverse optimal control approach via a CLF with different settling times as a function of the control gains. Furthermore, parametric uncertainties and comparisons with nonlinear controllers such as passivity-based and Lyapunov-based approaches developed in the continuous-time domain have demonstrated the superiority of the proposed discrete control approach. All of these simulations have been implemented in the MATLAB software.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-04T21:34:22Z
dc.date.available.none.fl_str_mv 2020-11-04T21:34:22Z
dc.date.issued.none.fl_str_mv 2020-10-26
dc.date.submitted.none.fl_str_mv 2020-11-03
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Montoya, O.D.; Gil-González, W.; Dominguez-Jimenez, J.A.; Molina-Cabrera, A.; Giral-Ramírez, D.A. Global Stabilization of a Reaction Wheel Pendulum: A Discrete-Inverse Optimal Formulation Approach via A Control Lyapunov Function. Symmetry 2020, 12, 1771.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9544
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2073-8994/12/11/1771
dc.identifier.doi.none.fl_str_mv 10.3390/sym12111771
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O.D.; Gil-González, W.; Dominguez-Jimenez, J.A.; Molina-Cabrera, A.; Giral-Ramírez, D.A. Global Stabilization of a Reaction Wheel Pendulum: A Discrete-Inverse Optimal Formulation Approach via A Control Lyapunov Function. Symmetry 2020, 12, 1771.
10.3390/sym12111771
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9544
https://www.mdpi.com/2073-8994/12/11/1771
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 13 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Symmetry 2020 , 12 (11), 1771, Vol 12 no 11
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9544/1/90.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9544/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9544/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9544/4/90.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9544/5/90.pdf.jpg
bitstream.checksum.fl_str_mv 6efac1dda2ea2e4485181e9b5273b779
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
38bd1df0000ddc5e2a704581d1c15292
31be82bc6250aafc7a4ddf933b4ba300
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021589030666240
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walterce1f5078-74c6-4b5c-b56a-784f85e52a08Domínguez Jiménez, Juan Antoniob803e7a6-cdf4-4eab-8517-0bbb309f349bMolina-Cabrera, Alexander01b29f76-a1f3-4151-a070-ce883ba39849Giral-Ramírez, Diego Armando8926006f-c361-4505-9219-92565a6b4de42020-11-04T21:34:22Z2020-11-04T21:34:22Z2020-10-262020-11-03Montoya, O.D.; Gil-González, W.; Dominguez-Jimenez, J.A.; Molina-Cabrera, A.; Giral-Ramírez, D.A. Global Stabilization of a Reaction Wheel Pendulum: A Discrete-Inverse Optimal Formulation Approach via A Control Lyapunov Function. Symmetry 2020, 12, 1771.https://hdl.handle.net/20.500.12585/9544https://www.mdpi.com/2073-8994/12/11/177110.3390/sym12111771Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper deals with the global stabilization of the reaction wheel pendulum (RWP) in the discrete-time domain. The discrete-inverse optimal control approach via a control Lyapunov function (CLF) is employed to make the stabilization task. The main advantages of using this control methodology can be summarized as follows: (i) it guarantees exponential stability in closed-loop operation, and (ii) the inverse control law is optimal since it minimizes the cost functional of the system. Numerical simulations demonstrate that the RWP is stabilized with the discrete-inverse optimal control approach via a CLF with different settling times as a function of the control gains. Furthermore, parametric uncertainties and comparisons with nonlinear controllers such as passivity-based and Lyapunov-based approaches developed in the continuous-time domain have demonstrated the superiority of the proposed discrete control approach. All of these simulations have been implemented in the MATLAB software.13 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Symmetry 2020 , 12 (11), 1771, Vol 12 no 11Global stabilization of a reaction wheel pendulum: A discrete-inverse optimal formulation approach via a control lyapunov functioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Discrete-inverse optimal controlGlobal exponential stabilizationReaction wheel pendulumParametric uncertaintiesDiscrete-affine systemsCost functionalCartagena de IndiasPúblico generalIsidori, A. Nonlinear Control Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013.Iqbal, J.; Ullah, M.; Khan, S.G.; Khelifa, B.; Cukovi´c, S. Nonlinear control systems-A brief overview of ´ historical and recent advances. Nonlinear Eng. 2017, 6, 301–312.Lu, Q.; Sun, Y.; Mei, S. Nonlinear Control Systems and Power System Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 10.Montoya, O.D.; Gil-González, W. Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach. Eng. Sci. Technol. Int. J. 2020, 23, 21–29Montoya, O.D.; Garrido, V.M.; Gil-González, W.; Orozco-Henao, C. Passivity-Based Control Applied of a Reaction Wheel Pendulum: An IDA-PBC Approach. In Proceedings of the 2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 13–15 November 2019; pp. 1–6Olivares, M.; Albertos, P. Linear control of the flywheel inverted pendulum. ISA Trans. 2014, 53, 1396–1403.Correa-Ramírez, V.D.; Giraldo-Buitrago, D.; Escobar-Mejía, A. Fuzzy control of an inverted pendulum Driven by a reaction wheel using a trajectory tracking scheme. TecnoLogicas 2017, 20, 57–69.Spong, M.W.; Corke, P.; Lozano, R. Nonlinear control of the Reaction Wheel Pendulum. Automatica 2001, 37, 1845–1851.Baimukashev, D.; Sandibay, N.; Rakhim, B.; Varol, H.A.; Rubagotti, M. Deep Learning-Based Approximate Optimal Control of a Reaction-Wheel-Actuated Spherical Inverted Pendulum. In Proceedings of the 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Boston, MA, USA, 6–9 July 2020; pp. 1322–1328.Montoya, O.D.; Gil-González, W.; Ramírez-Vanegas, C. Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach. Symmetry 2020, 12, 1359.Sanchez, E.N.; Ornelas-Tellez, F. Discrete-Time Inverse Optimal Control for Nonlinear Systems; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2017.Ornelas, F.; Sanchez, E.N.; Loukianov, A.G. Discrete-time inverse optimal control for nonlinear systems trajectory tracking. In Proceedings of the 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA, USA, 15–17 December 2010Montoya, O.D.; Gil-González, W.; Serra, F.M. Discrete-time inverse optimal control for a reaction wheel pendulum: a passivity-based control approach. Rev. UIS Ing. 2020, 19, 123–132.Ohsawa, T.; Bloch, A.M.; Leok, M. Discrete Hamilton-Jacobi Theory. SIAM J. Control Optim. 2011, 49, 1829–1856.Block, D.J.; Åström, K.J.; Spong, M.W. The reaction wheel pendulum. Synth. Lect. Control Mechatron. 2007, 1, 1–105.Atkinson, C.; Osseiran, A. Discrete-space time-fractional processes. Fract. Calc. Appl. Anal. 2011, 14Owolabi, K.M.; Atangana, A. Finite Difference Approximations. In Numerical Methods for Fractional Differentiation; Springer: Singapore, 2019; pp. 83–137.Sun, J.; liang Cheng, X. Iterative methods for a forward-backward heat equation in two-dimension. Appl. Math.-A J. Chin. Univ. 2010, 25, 101–111.Keadnarmol, P.; Rojsiraphisal, T. Globally exponential stability of a certain neutral differential equation with time-varying delays. Adv. Differ. Equ. 2014, 2014.Teel, A.R.; Forni, F.; Zaccarian, L. Lyapunov-Based Sufficient Conditions for Exponential Stability in Hybrid Systems. IEEE Trans. Autom. Control 2013, 58, 1591–1596.Valenzuela, J.G.; Montoya, O.D.; Giraldo-Buitrago, D. Local Control of Reaction Wheel Pendulum Using Fuzzy Logic. Sci. Tech. 2013, 18, 623–632.Sanfelice, R.G. On the Existence of Control Lyapunov Functions and State-Feedback Laws for Hybrid Systems. IEEE Trans. Autom. Control 2013, 58, 3242–3248.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL90.pdf90.pdfArtículo principalapplication/pdf351169https://repositorio.utb.edu.co/bitstream/20.500.12585/9544/1/90.pdf6efac1dda2ea2e4485181e9b5273b779MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9544/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9544/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT90.pdf.txt90.pdf.txtExtracted texttext/plain35245https://repositorio.utb.edu.co/bitstream/20.500.12585/9544/4/90.pdf.txt38bd1df0000ddc5e2a704581d1c15292MD54THUMBNAIL90.pdf.jpg90.pdf.jpgGenerated Thumbnailimage/jpeg84866https://repositorio.utb.edu.co/bitstream/20.500.12585/9544/5/90.pdf.jpg31be82bc6250aafc7a4ddf933b4ba300MD5520.500.12585/9544oai:repositorio.utb.edu.co:20.500.12585/95442023-05-26 10:25:15.719Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=