An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods

The effective distribution of perishable food items is a critical aspect of managing the food industry's supply chain, given their physical–chemical, biological characteristics and composition, which make them highly susceptible to rapid deterioration. This research presents a transport model i...

Full description

Autores:
Acevedo-Chedid, Jaime
Soto, Melissa Caro
Ospina-Mateus, Holman
Salas-Navarro, Katherinne
Sana, Shib Sankar
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12261
Acceso en línea:
https://hdl.handle.net/20.500.12585/12261
https://doi.org/10.1007/s12063-023-00379-8
Palabra clave:
Time Windows;
Pickup and Delivery;
Dynamic Routing
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_be699cb5ebbe7c1f283b426f24871ad2
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12261
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
title An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
spellingShingle An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
Time Windows;
Pickup and Delivery;
Dynamic Routing
LEMB
title_short An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
title_full An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
title_fullStr An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
title_full_unstemmed An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
title_sort An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods
dc.creator.fl_str_mv Acevedo-Chedid, Jaime
Soto, Melissa Caro
Ospina-Mateus, Holman
Salas-Navarro, Katherinne
Sana, Shib Sankar
dc.contributor.author.none.fl_str_mv Acevedo-Chedid, Jaime
Soto, Melissa Caro
Ospina-Mateus, Holman
Salas-Navarro, Katherinne
Sana, Shib Sankar
dc.subject.keywords.spa.fl_str_mv Time Windows;
Pickup and Delivery;
Dynamic Routing
topic Time Windows;
Pickup and Delivery;
Dynamic Routing
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The effective distribution of perishable food items is a critical aspect of managing the food industry's supply chain, given their physical–chemical, biological characteristics and composition, which make them highly susceptible to rapid deterioration. This research presents a transport model incorporating a cross-dock system to efficiently deliver goods from production plants to markets. The model incorporates a vehicle routing model that considers time windows for pick-ups and deliveries, optimal cross-dock center locations, a heterogeneous vehicle fleet of limited capacity, and scheduling product collections, arrivals, and departures. The model is a mixed-integer non-linear optimization model that effectively minimizes logistics costs and environmental impacts by considering various parameters such as speed, waiting times, loading and unloading times, and costs associated with the entire operation. The findings demonstrate that the cross-dock structure is highly conducive to distributing perishable goods, achieved by minimizing collection and distribution operations, adhering to designated time windows, and efficiently allocating resources. The GAMS 23.6.5 software is used to program the model, employing various solution strategies, including experimental tests with scenarios, as well as the "posterior," "Pareto optimization," and "weighted sum" methods. The case study in Sincelejo (Sucre, Colombia) reported the best solution, representing 60% of logistics and 40% of environmental costs. The results show complete compliance with routes, no inventory generation, and the necessity of two inbounds and two outbound vehicles for collection from suppliers and delivery to retailers. This study presents an efficient model for managing the transportation of perishable goods, contributing to sustainable distribution activities, and environmental conservation in the food industry's supply chain. © 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-21T15:33:23Z
dc.date.available.none.fl_str_mv 2023-07-21T15:33:23Z
dc.date.issued.none.fl_str_mv 2023
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Acevedo-Chedid, J., Soto, M.C., Ospina-Mateus, H. et al. An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods. Oper Manag Res (2023). https://doi.org/10.1007/s12063-023-00379-8
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12261
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s12063-023-00379-8
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Acevedo-Chedid, J., Soto, M.C., Ospina-Mateus, H. et al. An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods. Oper Manag Res (2023). https://doi.org/10.1007/s12063-023-00379-8
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12261
https://doi.org/10.1007/s12063-023-00379-8
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Operations Management Research
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12261/1/Scopus%20-%20Document%20details%20-%20An%20optimization%20model%20for%20routing%e2%80%94location%20of%20vehicles%20with%20time%20windows%20and%20cross-docking%20structures%20in%20a%20sustainable%20supply%20chain%20of%20perishable%20foods.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12261/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12261/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12261/4/Scopus%20-%20Document%20details%20-%20An%20optimization%20model%20for%20routing%e2%80%94location%20of%20vehicles%20with%20time%20windows%20and%20cross-docking%20structures%20in%20a%20sustainable%20supply%20chain%20of%20perishable%20foods.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12261/5/Scopus%20-%20Document%20details%20-%20An%20optimization%20model%20for%20routing%e2%80%94location%20of%20vehicles%20with%20time%20windows%20and%20cross-docking%20structures%20in%20a%20sustainable%20supply%20chain%20of%20perishable%20foods.pdf.jpg
bitstream.checksum.fl_str_mv 65b3e4b515d04a549eaf7e3837456888
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
70a782f863d2b7be45e9a0c0df30a0e3
4837aef33d7eb000bcc51577e6e44568
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021644565348352
spelling Acevedo-Chedid, Jaime55848f44-62b2-463a-8a80-58f6a2819afeSoto, Melissa Caro235d26be-5797-4d73-b7aa-d5cdc5e4ea3bOspina-Mateus, Holman1b4b1bc0-3606-4c14-bb13-dbc9d4251891Salas-Navarro, Katherinneb358d582-e66b-4c09-8f7e-34b116ff94aeSana, Shib Sankare81af3d1-9873-434c-8df4-41a1929550652023-07-21T15:33:23Z2023-07-21T15:33:23Z20232023Acevedo-Chedid, J., Soto, M.C., Ospina-Mateus, H. et al. An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods. Oper Manag Res (2023). https://doi.org/10.1007/s12063-023-00379-8https://hdl.handle.net/20.500.12585/12261https://doi.org/10.1007/s12063-023-00379-8Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe effective distribution of perishable food items is a critical aspect of managing the food industry's supply chain, given their physical–chemical, biological characteristics and composition, which make them highly susceptible to rapid deterioration. This research presents a transport model incorporating a cross-dock system to efficiently deliver goods from production plants to markets. The model incorporates a vehicle routing model that considers time windows for pick-ups and deliveries, optimal cross-dock center locations, a heterogeneous vehicle fleet of limited capacity, and scheduling product collections, arrivals, and departures. The model is a mixed-integer non-linear optimization model that effectively minimizes logistics costs and environmental impacts by considering various parameters such as speed, waiting times, loading and unloading times, and costs associated with the entire operation. The findings demonstrate that the cross-dock structure is highly conducive to distributing perishable goods, achieved by minimizing collection and distribution operations, adhering to designated time windows, and efficiently allocating resources. The GAMS 23.6.5 software is used to program the model, employing various solution strategies, including experimental tests with scenarios, as well as the "posterior," "Pareto optimization," and "weighted sum" methods. The case study in Sincelejo (Sucre, Colombia) reported the best solution, representing 60% of logistics and 40% of environmental costs. The results show complete compliance with routes, no inventory generation, and the necessity of two inbounds and two outbound vehicles for collection from suppliers and delivery to retailers. This study presents an efficient model for managing the transportation of perishable goods, contributing to sustainable distribution activities, and environmental conservation in the food industry's supply chain. © 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.application/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Operations Management ResearchAn optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foodsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Time Windows;Pickup and Delivery;Dynamic RoutingLEMBCartagena de IndiasAgi, M.A.N., Soni, H.N. Joint pricing and inventory decisions for perishable products with age-, stock-, and price-dependent demand rate (2020) Journal of the Operational Research Society, 71 (1), pp. 85-99. Cited 36 times. https://www.tandfonline.com/loi/tjor20 doi: 10.1080/01605682.2018.1525473Agrawal, A.K., Yadav, S., Gupta, A.A., Pandey, S. A genetic algorithm model for optimizing vehicle routing problems with perishable products under time-window and quality requirements (2022) Decision Analytics Journal, 5, art. no. 100139. Cited 7 times. https://www.journals.elsevier.com/decision-analytics-journal doi: 10.1016/j.dajour.2022.100139Agustina, D., Lee, C.K.M., Piplani, R. Vehicle scheduling and routing at a cross docking center for food supply chains (2014) International Journal of Production Economics, 152, pp. 29-41. Cited 118 times. doi: 10.1016/j.ijpe.2014.01.002Ahkamiraad, A., Wang, Y. Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery, and time windows (2018) Computers and Industrial Engineering, 119, pp. 76-84. Cited 45 times. doi: 10.1016/j.cie.2018.03.007Ahmadizar, F., Zeynivand, M., Arkat, J. Two-level vehicle routing with cross-docking in a three-echelon supply chain: A genetic algorithm approach (2015) Applied Mathematical Modelling, 39 (22), pp. 7065-7081. Cited 65 times. www.elsevier.com/inca/publications/store/5/2/4/9/9/8/ doi: 10.1016/j.apm.2015.03.005Ai, T.J., Kachitvichyanukul, V. Particle swarm optimization and two solution representations for solving the capacitated vehicle routing problem (2009) Computers and Industrial Engineering, 56 (1), pp. 380-387. Cited 168 times. doi: 10.1016/j.cie.2008.06.012Alamatsaz, K., Ahmadi, A., Mirzapour Al-e-hashem, S.M.J. A multiobjective model for the green capacitated location-routing problem considering drivers’ satisfaction and time window with uncertain demand (2022) Environmental Science and Pollution Research, 29 (4), pp. 5052-5071. Cited 10 times. https://link.springer.com/journal/11356 doi: 10.1007/s11356-021-15907-xAmorim, P., Günther, H.-O., Almada-Lobo, B. Multi-objective integrated production and distribution planning of perishable products (2012) International Journal of Production Economics, 138 (1), pp. 89-101. Cited 204 times. doi: 10.1016/j.ijpe.2012.03.005Anbuudayasankar, S., Ganesh, K., Mohapatra, S. (2016) Models for practical routing problems in logistics. Cited 34 times. SpringerApte, U.M., Viswanathan, S. Effective cross docking for improving distribution efficiencies (2000) Int J Logist, 3 (3), pp. 291-302. Cited 201 times.Ashtineh, H., Pishvaee, M.S. Alternative fuel vehicle-routing problem: A life cycle analysis of transportation fuels (2019) Journal of Cleaner Production, 219, pp. 166-182. Cited 31 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2019.01.343Azi, N., Gendreau, M., Potvin, J.-Y. An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles (2010) European Journal of Operational Research, 202 (3), pp. 756-763. Cited 184 times. doi: 10.1016/j.ejor.2009.06.034Baldacci, R., Mingozzi, A. A unified exact method for solving different classes of vehicle routing problems (2009) Mathematical Programming, 120 (2), pp. 347-380. Cited 177 times. doi: 10.1007/s10107-008-0218-9Ballou, R.H., Rahardja, H., Sakai, N. Selected country circuity factors for road travel distance estimation (2002) Transportation Research Part A: Policy and Practice, 36 (9), pp. 843-848. Cited 59 times. www.elsevier.com/inca/publications/store/5/4/7/ doi: 10.1016/S0965-8564(01)00044-1Baniamerian, A., Bashiri, M., Tavakkoli-Moghaddam, R. Modified variable neighborhood search and genetic algorithm for profitable heterogeneous vehicle routing problem with cross-docking (2019) Applied Soft Computing Journal, 75, pp. 441-460. Cited 70 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2018.11.029Belhaiza, S., Hansen, P., Laporte, G. A hybrid variable neighborhood tabu search heuristic for the vehicle routing problem with multiple time windows (2014) Computers and Operations Research, Part B 52, pp. 269-281. Cited 122 times. www.elsevier.com/inca/publications/store/3/0/0/ doi: 10.1016/j.cor.2013.08.010Benjamin, A.M., Beasley, J.E. Metaheuristics for the waste collection vehicle routing problem with time windows, driver rest period and multiple disposal facilities (2010) Computers and Operations Research, 37 (12), pp. 2270-2280. Cited 142 times. doi: 10.1016/j.cor.2010.03.019Benrqya, Y. Costs and benefits of using cross-docking in the retail supply chain: A case study of an FMCG company (2019) International Journal of Retail and Distribution Management, 47 (4), pp. 412-432. Cited 22 times. http://www.emeraldinsight.com/info/journals/ijrdm/ijrdm.jsp doi: 10.1108/IJRDM-07-2018-0119Birim, Ş. Vehicle routing problem with cross docking: A simulated annealing approach (2016) Procedia Soc Behav Sci, 235, pp. 149-158. Cited 24 times.Brandão, J. A deterministic tabu search algorithm for the fleet size and mix vehicle routing problem (2009) European Journal of Operational Research, 195 (3), pp. 716-728. Cited 98 times. doi: 10.1016/j.ejor.2007.05.059Bravo Urria, M.I. (2015) Modelo De programación matemática Para El VRPPDTW Multiobjetivo Con Flota heterogénea Y Propuesta De Algoritmo Evolutivo Para Su resoluciónBräysy, O., Porkka, P.P., Dullaert, W., Repoussis, P.P., Tarantilis, C.D. A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time windows (2009) Expert Systems with Applications, 36 (4), pp. 8460-8475. Cited 52 times. doi: 10.1016/j.eswa.2008.10.040Castellucci, P.B., Costa, A.M., Toledo, F. Network scheduling problem with cross-docking and loading constraints (2021) Computers and Operations Research, 132, art. no. 105271. Cited 17 times. www.elsevier.com/inca/publications/store/3/0/0/ doi: 10.1016/j.cor.2021.105271Chaudhary, V., Kulshrestha, R., Routroy, S. State-of-the-art literature review on inventory models for perishable products (2018) Journal of Advances in Management Research, 15 (3), pp. 306-346. Cited 44 times. emeraldgrouppublishing.com/products/journals/journals.htm?id=jamr doi: 10.1108/JAMR-09-2017-0091Chen, C., Qiu, R., Hu, X. The Location-Routing Problem with Full Truckloads in Low-Carbon Supply Chain Network Designing (2018) Mathematical Problems in Engineering, 2018, art. no. 6315631. Cited 17 times. http://www.hindawi.com/journals/mpe/contents.html doi: 10.1155/2018/6315631Chen, H.-K., Hsueh, C.-F., Chang, M.-S. Production scheduling and vehicle routing with time windows for perishable food products (2009) Computers and Operations Research, 36 (7), pp. 2311-2319. Cited 251 times. doi: 10.1016/j.cor.2008.09.010Chen, P., Huang, H.-k., Dong, X.-Y. Iterated variable neighborhood descent algorithm for the capacitated vehicle routing problem (2010) Expert Systems with Applications, 37 (2), pp. 1620-1627. Cited 111 times. doi: 10.1016/j.eswa.2009.06.047Cóccola, M.E., Méndez, C.A., Zamarripa, M., Espuña, A. Integrated production and distribution management with cross docking in supply chains (2012) Computer Aided Chemical Engineering, 31, pp. 1050-1054. Cited 4 times. http://www.elsevier.com/wps/find/bookdescription.cws_home/BS_CCE/description#description doi: 10.1016/B978-0-444-59506-5.50041-9Cóccola, M., Méndez, C.A., Dondo, R.G. A branch-and-price approach to evaluate the role of cross-docking operations in consolidated supply chains (2015) Computers and Chemical Engineering, 80, pp. 15-29. Cited 16 times. doi: 10.1016/j.compchemeng.2015.04.039Decc, D. (2011) Guidelines to Defra/Decc's GHG Conversion Factors for Company Reporting. Cited 283 times. London: Department for Environment, Food and Rural Affairs and Department for Energy and Climate ChangeErdoĝan, S., Miller-Hooks, E. A Green Vehicle Routing Problem (Open Access) (2012) Transportation Research Part E: Logistics and Transportation Review, 48 (1), pp. 100-114. Cited 736 times. www.elsevier.com/inca/publications/store/6/0/0/2/4/4/ doi: 10.1016/j.tre.2011.08.001Fachini, R.F., Armentano, V.A. Logic-based Benders decomposition for the heterogeneous fixed fleet vehicle routing problem with time windows (2020) Computers and Industrial Engineering, 148, art. no. 106641. Cited 30 times. https://www.journals.elsevier.com/computers-and-industrial-engineering doi: 10.1016/j.cie.2020.106641Ghasemkhani, A., Tavakkoli-Moghaddam, R., Rahimi, Y., Shahnejat-Bushehri, S., Tavakkoli-Moghaddam, H. Integrated production-inventory-routing problem for multi-perishable products under uncertainty by meta-heuristic algorithms (2022) International Journal of Production Research, 60 (9), pp. 2766-2786. Cited 13 times. http://www.tandfonline.com/toc/tprs20/current doi: 10.1080/00207543.2021.1902013Ghoseiri, K., Ghannadpour, S.F. Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm (2010) Applied Soft Computing Journal, 10 (4), pp. 1096-1107. Cited 207 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2010.04.001Golestani, M., Moosavirad, S.H., Asadi, Y., Biglari, S. A Multi-Objective Green Hub Location Problem with Multi Item-Multi Temperature Joint Distribution for Perishable Products in Cold Supply Chain (Open Access) (2021) Sustainable Production and Consumption, 27, pp. 1183-1194. Cited 17 times. http://www.journals.elsevier.com/sustainable-production-and-consumption/ doi: 10.1016/j.spc.2021.02.026Gómez, J., Baca, A. (2014) Analisis de operaciones cross docking directas e indirectas en Colombia Universidad Militar nueva Granada, BogotáHasani Goodarzi, A., Zegordi, S.H. A location-routing problem for cross-docking networks: A biogeography-based optimization algorithm (2016) Computers and Industrial Engineering, 102, pp. 132-146. Cited 35 times. doi: 10.1016/j.cie.2016.10.023Govindan, K., Jafarian, A., Khodaverdi, R., Devika, K. Two-echelon multiple-vehicle location-routing problem with time windows for optimization of sustainable supply chain network of perishable food (2014) International Journal of Production Economics, 152, pp. 9-28. Cited 463 times. doi: 10.1016/j.ijpe.2013.12.028Grangier, P., Gendreau, M., Lehuédé, F., Rousseau, L.-M. A matheuristic based on large neighborhood search for the vehicle routing problem with cross-docking (2017) Computers and Operations Research, 84, pp. 116-126. Cited 73 times. www.elsevier.com/inca/publications/store/3/0/0/ doi: 10.1016/j.cor.2017.03.004Halloran, A., Clement, J., Kornum, N., Bucatariu, C., Magid, J. Addressing food waste reduction in Denmark (2014) Food Policy, 49 (P1), pp. 294-301. Cited 228 times. http://www.elsevier.com/inca/publications/store/3/0/4/1/9/index.htt doi: 10.1016/j.foodpol.2014.09.005Hanchuan, P., Ruifang, W., Hao, D., Feng, Z. The Research of logistics cost and influencing factors based on cross docking (2013) Procedia Soc Behav Sci, 96, pp. 1812-1817. Cited 5 times.Hasani-Goodarzi, A., Tavakkoli-Moghaddam, R. Capacitated vehicle routing problem for multi-product cross-docking with split deliveries and pickups (2012) Procedia Soc Behav Sci, 62, pp. 1360-1365. Cited 27 times.Hasani Goodarzi, A., Nahavandi, N., Zegordi, S.H. A multiobjective imperialist competitive algorithm for vehicle routing problem in cross-docking networks with time windows (2018) J Ind Syst Eng, 11 (1), pp. 1-23. Cited 9 times.İLHAN, İ. An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem (2021) Swarm and Evolutionary Computation, 64, art. no. 100911. Cited 37 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724666/description#description doi: 10.1016/j.swevo.2021.100911Imran, A., Salhi, S., Wassan, N.A. A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem (2009) European Journal of Operational Research, 197 (2), pp. 509-518. Cited 113 times. doi: 10.1016/j.ejor.2008.07.022Kaboudani, Y., Ghodsypour, S.H., Kia, H., Shahmardan, A. Vehicle routing and scheduling in cross docks with forward and reverse logistics (2020) Operational Research, 20 (3), pp. 1589-1622. Cited 10 times. http://www.springer.com/business/operations+research/journal/12351 doi: 10.1007/s12351-018-0396-zKalenatic, D., Bello, C.A.L., Rodríguez, L.J.G., Velasco, F.J.R. Localización de una plataforma de cross docking en el contexto de logística focalizada utilizando distancias euclidianas (2008) Cienc Ing Neogranad, 18 (1), pp. 17-34.Kara, I., Kara, B.Y., Yetis, M.K. Energy minimizing vehicle routing problem (2007) Combinatorial Optimization and Applications: First International Conference, COCOA 2007, Xi’an, China, August 14–16, 2007. Cited 20 times. Proceedings 1, SpringerKinnear, E. Is there any magic in cross-docking? (1997) Supply Chain Management, 2 (2), pp. 49-52. Cited 50 times. doi: 10.1108/13598549710166096Konstantakopoulos, G.D., Gayialis, S.P., Kechagias, E.P. Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification (2022) Operational Research, 22 (3), pp. 2033-2062. Cited 48 times. http://www.springer.com/business/operations+research/journal/12351 doi: 10.1007/s12351-020-00600-7Kuo, J.-C., Chen, M.-C. Developing an advanced Multi-Temperature Joint Distribution System for the food cold chain (2010) Food Control, 21 (4), pp. 559-566. Cited 170 times. doi: 10.1016/j.foodcont.2009.08.007Kwon, Y.-J., Choi, Y.-J., Lee, D.-H. Heterogeneous fixed fleet vehicle routing considering carbon emission (2013) Transportation Research Part D: Transport and Environment, 23, pp. 81-89. Cited 112 times. www.elsevier.com/inca/publications/store/3/1/1/5/3/ doi: 10.1016/j.trd.2013.04.001Lee, Y.H., Jung, J.W., Lee, K.M. Vehicle routing scheduling for cross-docking in the supply chain (Open Access) (2006) Computers and Industrial Engineering, 51 (2), pp. 247-256. Cited 221 times. doi: 10.1016/j.cie.2006.02.006Leggieri, V., Haouari, M. A practical solution approach for the green vehicle routing problem (Open Access) (2017) Transportation Research Part E: Logistics and Transportation Review, 104, pp. 97-112. Cited 66 times. www.elsevier.com/inca/publications/store/6/0/0/2/4/4/ doi: 10.1016/j.tre.2017.06.003Lei, H., Laporte, G., Guo, B. The capacitated vehicle routing problem with stochastic demands and time windows (2011) Computers and Operations Research, 38 (12), pp. 1775-1783. Cited 101 times. doi: 10.1016/j.cor.2011.02.007Li, X., Tian, P., Leung, S.C.H. Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm (Open Access) (2010) International Journal of Production Economics, 125 (1), pp. 137-145. Cited 214 times. doi: 10.1016/j.ijpe.2010.01.013Liang, X., Wang, N., Zhang, M., Jiang, B. Bi-objective multi-period vehicle routing for perishable goods delivery considering customer satisfaction (2023) Expert Systems with Applications, 220, art. no. 119712. https://www.journals.elsevier.com/expert-systems-with-applications doi: 10.1016/j.eswa.2023.119712Liao, C.-J., Lin, Y., Shih, S.C. Vehicle routing with cross-docking in the supply chain (2010) Expert Systems with Applications, 37 (10), pp. 6868-6873. Cited 111 times. doi: 10.1016/j.eswa.2010.03.035Lin, S.-W., Lee, Z.-J., Ying, K.-C., Lee, C.-Y. Applying hybrid meta-heuristics for capacitated vehicle routing problem (2009) Expert Systems with Applications, Part 1 36 (2 PART 1), pp. 1505-1512. Cited 104 times. doi: 10.1016/j.eswa.2007.11.060Maknoon, Y., Laporte, G. Vehicle routing with cross-dock selection (2017) Computers and Operations Research, 77, pp. 254-266. Cited 40 times. www.elsevier.com/inca/publications/store/3/0/0/ doi: 10.1016/j.cor.2016.08.007Marinakis, Y., Marinaki, M., Migdalas, A. A Multi-Adaptive Particle Swarm Optimization for the Vehicle Routing Problem with Time Windows (2019) Information Sciences, 481, pp. 311-329. Cited 94 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2018.12.086Masmoudi, M.A., Hosny, M., Demir, E., Genikomsakis, K.N., Cheikhrouhou, N. The dial-a-ride problem with electric vehicles and battery swapping stations (Open Access) (2018) Transportation Research Part E: Logistics and Transportation Review, 118, pp. 392-420. Cited 72 times. www.elsevier.com/inca/publications/store/6/0/0/2/4/4/ doi: 10.1016/j.tre.2018.08.005Medina, L.B.R., La Rota, E.C.G., Castro, J.A.O. Una revisión al estado del arte del problema de ruteo de vehículos: Evolución histórica y métodos de solución (2011) Ingeniería, 16 (2), pp. 35-55. Cited 17 times.Minner, S., Transchel, S. Order variability in perishable product supply chains (2017) European Journal of Operational Research, 260 (1), pp. 93-107. Cited 35 times. https://www.journals.elsevier.com/european-journal-of-operational-research/ doi: 10.1016/j.ejor.2016.12.016Mohtashami, A. A novel dynamic genetic algorithm-based method for vehicle scheduling in cross docking systems with frequent unloading operation (2015) Computers and Industrial Engineering, 90, pp. 221-240. Cited 21 times. doi: 10.1016/j.cie.2015.09.008Montoya-Torres, J.R., López Franco, J., Nieto Isaza, S., Felizzola Jiménez, H., Herazo-Padilla, N. A literature review on the vehicle routing problem with multiple depots (2015) Computers and Industrial Engineering, 79, pp. 115-129. Cited 321 times. doi: 10.1016/j.cie.2014.10.029Mousavi, S.M., Tavakkoli-Moghaddam, R. A hybrid simulated annealing algorithm for location and routing scheduling problems with cross-docking in the supply chain (2013) Journal of Manufacturing Systems, 32 (2), pp. 335-347. Cited 111 times. doi: 10.1016/j.jmsy.2012.12.002Mousavi, S.M., Vahdani, B., Tavakkoli-Moghaddam, R., Hashemi, H. Location of cross-docking centers and vehicle routing scheduling under uncertainty: A fuzzy possibilistic-stochastic programming model (2014) Applied Mathematical Modelling, 38 (7-8), pp. 2249-2264. Cited 66 times. www.elsevier.com/inca/publications/store/5/2/4/9/9/8/ doi: 10.1016/j.apm.2013.10.029Nguyen, P.K., Crainic, T.G., Toulouse, M. A tabu search for time-dependent multi-zone multi-trip vehicle routing problem with time windows (2013) European Journal of Operational Research, 231 (1), pp. 43-56. Cited 92 times. doi: 10.1016/j.ejor.2013.05.026Onstein, A.T.C., Ektesaby, M., Rezaei, J., Tavasszy, L.A., van Damme, D.A. Importance of factors driving firms’ decisions on spatial distribution structures (2020) International Journal of Logistics Research and Applications, 23 (1), pp. 24-43. Cited 22 times. http://www.tandf.co.uk/journals/carfax/13675567.html doi: 10.1080/13675567.2019.1574729Pan, B., Zhang, Z., Lim, A. Multi-trip time-dependent vehicle routing problem with time windows (2021) European Journal of Operational Research, 291 (1), pp. 218-231. Cited 60 times. https://www.journals.elsevier.com/european-journal-of-operational-research/ doi: 10.1016/j.ejor.2020.09.022Prescott-Gagnon, E., Desaulniers, G., Rousseau, L.-M. A branch-and-price-based large neighborhood search algorithm for the vehicle routing problem with time windows (2009) Networks, 54 (4), pp. 190-204. Cited 78 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/122543247/PDFSTART doi: 10.1002/net.20332Psychas, I.-D., Marinaki, M., Marinakis, Y., Migdalas, A. Non-dominated sorting differential evolution algorithm for the minimization of route based fuel consumption multiobjective vehicle routing problems (2017) Energy Systems, 8 (4), pp. 785-814. Cited 21 times. http://www.springer.com/engineering/energy+technology/journal/12667 doi: 10.1007/s12667-016-0209-5Qureshi, A.G., Taniguchi, E., Yamada, T. Exact solution for the Vehicle Routing Problem with Semi Soft Time Windows and its application (2010) Procedia - Social and Behavioral Sciences, 2 (3), pp. 5931-5943. Cited 29 times. http://www.sciencedirect.com/science/journal/18770428/1 doi: 10.1016/j.sbspro.2010.04.008Ramudhin, A., Chaabane, A., Kharoune, M., Paquet, M. Carbon Market Sensitive Green Supply Chain Network Design (2008) 2008 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2008, art. no. 4738039, pp. 1093-1097. Cited 88 times. ISBN: 978-142442630-0 doi: 10.1109/IEEM.2008.4738039Redlingshöfer, B., Coudurier, B., Georget, M. Quantifying food loss during primary production and processing in France (Open Access) (2017) Journal of Cleaner Production, 164, pp. 703-714. Cited 73 times. doi: 10.1016/j.jclepro.2017.06.173Rezaei, S., Kheirkhah, A. A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations (Open Access) (2018) Computational and Mathematical Organization Theory, 24 (1), pp. 51-98. Cited 29 times. http://link.springer.com/journal/10588 doi: 10.1007/s10588-017-9247-3Ross, A., Jayaraman, V. An evaluation of new heuristics for the location of cross-docks distribution centers in supply chain network design (2008) Computers and Industrial Engineering, 55 (1), pp. 64-79. Cited 99 times. doi: 10.1016/j.cie.2007.12.001Santos, F.A., Mateus, G.R., Salles da Cunha, A. A Branch-and-price algorithm for a Vehicle Routing Problem with Cross-Docking (2011) Electronic Notes in Discrete Mathematics, 37 (C), pp. 249-254. Cited 29 times. doi: 10.1016/j.endm.2011.05.043Shahabi-Shahmiri, R., Asian, S., Tavakkoli-Moghaddam, R., Mousavi, S.M., Rajabzadeh, M. A routing and scheduling problem for cross-docking networks with perishable products, heterogeneous vehicles and split delivery (2021) Computers and Industrial Engineering, 157, art. no. 107299. Cited 21 times. https://www.journals.elsevier.com/computers-and-industrial-engineering doi: 10.1016/j.cie.2021.107299http://purl.org/coar/resource_type/c_6501ORIGINALScopus - Document details - An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdfScopus - Document details - An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdfapplication/pdf193918https://repositorio.utb.edu.co/bitstream/20.500.12585/12261/1/Scopus%20-%20Document%20details%20-%20An%20optimization%20model%20for%20routing%e2%80%94location%20of%20vehicles%20with%20time%20windows%20and%20cross-docking%20structures%20in%20a%20sustainable%20supply%20chain%20of%20perishable%20foods.pdf65b3e4b515d04a549eaf7e3837456888MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12261/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12261/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTScopus - Document details - An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.txtScopus - Document details - An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.txtExtracted texttext/plain2633https://repositorio.utb.edu.co/bitstream/20.500.12585/12261/4/Scopus%20-%20Document%20details%20-%20An%20optimization%20model%20for%20routing%e2%80%94location%20of%20vehicles%20with%20time%20windows%20and%20cross-docking%20structures%20in%20a%20sustainable%20supply%20chain%20of%20perishable%20foods.pdf.txt70a782f863d2b7be45e9a0c0df30a0e3MD54THUMBNAILScopus - Document details - An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.jpgScopus - Document details - An optimization model for routing—location of vehicles with time windows and cross-docking structures in a sustainable supply chain of perishable foods.pdf.jpgGenerated Thumbnailimage/jpeg6446https://repositorio.utb.edu.co/bitstream/20.500.12585/12261/5/Scopus%20-%20Document%20details%20-%20An%20optimization%20model%20for%20routing%e2%80%94location%20of%20vehicles%20with%20time%20windows%20and%20cross-docking%20structures%20in%20a%20sustainable%20supply%20chain%20of%20perishable%20foods.pdf.jpg4837aef33d7eb000bcc51577e6e44568MD5520.500.12585/12261oai:repositorio.utb.edu.co:20.500.12585/122612023-07-22 00:17:37.295Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=