A generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles

For a two-dimensional compact oriented Riemannian manifold (M,g), and a vector field V on M, the Hopf–Poincaré theorem combined with the Gauss–Bonnet theorem gives the Gauss–Bonnet–Hopf–Poincaré (GBHP) formula: ∑z∈Z(V)indz(V)= [Formula presented] ∫MKdσ, where Z(V) is the set of zeros of V, indz(V) i...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8926
Acceso en línea:
https://hdl.handle.net/20.500.12585/8926
Palabra clave:
Binary differential equation
Branched section
G-structure with singularities
Index of singular point
Singularity of section
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_a6845367acc05e6b9de828f8268652c0
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8926
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv A generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles
title A generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles
spellingShingle A generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles
Binary differential equation
Branched section
G-structure with singularities
Index of singular point
Singularity of section
title_short A generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles
title_full A generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles
title_fullStr A generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles
title_full_unstemmed A generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles
title_sort A generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles
dc.subject.keywords.none.fl_str_mv Binary differential equation
Branched section
G-structure with singularities
Index of singular point
Singularity of section
topic Binary differential equation
Branched section
G-structure with singularities
Index of singular point
Singularity of section
description For a two-dimensional compact oriented Riemannian manifold (M,g), and a vector field V on M, the Hopf–Poincaré theorem combined with the Gauss–Bonnet theorem gives the Gauss–Bonnet–Hopf–Poincaré (GBHP) formula: ∑z∈Z(V)indz(V)= [Formula presented] ∫MKdσ, where Z(V) is the set of zeros of V, indz(V) is the index of V at z∈Z(V), and K is the curvature of g. We consider a locally trivial fiber bundle π:E→M over a compact oriented two-dimensional manifold M, and a section s of this bundle defined over M∖Σ, where Σ is a discrete subset of M called the set of singularities of the section. We assume that the behavior of the section s at the singularities is controlled in the following way: s(M∖Σ) coincides with the interior part of a surface S⊂E with boundary ∂S, and ∂S is π−1(Σ). For such sections s we define an index of s at a point of Σ, which generalizes in the natural way the index of zero of a vector field, and then prove that the sum of these indices at the points of Σ can be expressed as an integral over S of a 2-form constructed via a connection in E, thus we obtain a generalization of the GBHP formula. Also we consider branched sections with singularities, define an index of a branched section at a singular point, and find a generalization of the GBHP formula for the branched sections. © 2017
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:37Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:37Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Journal of Geometry and Physics; Vol. 121, pp. 108-122
dc.identifier.issn.none.fl_str_mv 03930440
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8926
dc.identifier.doi.none.fl_str_mv 10.1016/j.geomphys.2017.07.011
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57195299684
6507151476
identifier_str_mv Journal of Geometry and Physics; Vol. 121, pp. 108-122
03930440
10.1016/j.geomphys.2017.07.011
Universidad Tecnológica de Bolívar
Repositorio UTB
57195299684
6507151476
url https://hdl.handle.net/20.500.12585/8926
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026853352&doi=10.1016%2fj.geomphys.2017.07.011&partnerID=40&md5=6515fde524ff8a0f67f24afa94c152ab
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8926/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021776915562496
spelling 2020-03-26T16:32:37Z2020-03-26T16:32:37Z2017Journal of Geometry and Physics; Vol. 121, pp. 108-12203930440https://hdl.handle.net/20.500.12585/892610.1016/j.geomphys.2017.07.011Universidad Tecnológica de BolívarRepositorio UTB571952996846507151476For a two-dimensional compact oriented Riemannian manifold (M,g), and a vector field V on M, the Hopf–Poincaré theorem combined with the Gauss–Bonnet theorem gives the Gauss–Bonnet–Hopf–Poincaré (GBHP) formula: ∑z∈Z(V)indz(V)= [Formula presented] ∫MKdσ, where Z(V) is the set of zeros of V, indz(V) is the index of V at z∈Z(V), and K is the curvature of g. We consider a locally trivial fiber bundle π:E→M over a compact oriented two-dimensional manifold M, and a section s of this bundle defined over M∖Σ, where Σ is a discrete subset of M called the set of singularities of the section. We assume that the behavior of the section s at the singularities is controlled in the following way: s(M∖Σ) coincides with the interior part of a surface S⊂E with boundary ∂S, and ∂S is π−1(Σ). For such sections s we define an index of s at a point of Σ, which generalizes in the natural way the index of zero of a vector field, and then prove that the sum of these indices at the points of Σ can be expressed as an integral over S of a 2-form constructed via a connection in E, thus we obtain a generalization of the GBHP formula. Also we consider branched sections with singularities, define an index of a branched section at a singular point, and find a generalization of the GBHP formula for the branched sections. © 2017This investigation was supported by Vicerrector?a de Investigaciones and the Faculty of Sciences of Universidad de los Andes (Grant FAPA).Recurso electrónicoapplication/pdfengElsevier B.V.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85026853352&doi=10.1016%2fj.geomphys.2017.07.011&partnerID=40&md5=6515fde524ff8a0f67f24afa94c152abA generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundlesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Binary differential equationBranched sectionG-structure with singularitiesIndex of singular pointSingularity of sectionArias Amaya, FabiánMalakhaltsev M.Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. II (1996), p. xvi+468. , Wiley Classics Library, John Wiley & Sons, Inc., New York Reprint of the 1969 original, a Wiley-Interscience PublicationBott, R., Tu, L.W., Differential Forms in Algebraic Topology (1982), Springer New YorkBruce, J.W., Tari, F., On binary differential equations (1995) Nonlinearity, 8 (2), pp. 255-271Bruce, J.W., Tari, F., Implicit differential equations from the singularity point of view (1996) Banach Center Publ., 33, pp. 23-38Fukui, T., Nuño-Ballesteros, J.J., Isolated singularities of binary differential equations of degree $n$ (2012) Publ. Mat., 56, pp. 65-89Chern, S.-S., A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds (1944) Ann. Mat., 45 (4), pp. 747-752Arteaga B., J.R., Malakhaltsev, M., Trejos Serna, A.H., Isometry group and geodesics of the Wagner lift of a Riemannian metric on two-dimensional manifold (2012) Lobachevskii J. Math., 33 (4), pp. 293-311Agafonov, S.I., On implicit ODEs with hexagonal web of solutions (2009) J. Geom. Anal., 19, pp. 481-508Arias, F.A., Arteaga B., J.R., Malakhaltsev, M.A., 3-webs with singularities (2016) Lobachevskii J. Math., 37 (1), pp. 1-20Artega B., J.R., Malakhaltsev, M.A., Symmetries of sub-Riemannian surfaces (2011) J. Geom. Phys., 61 (1), pp. 290-308Kushner, A., Classification of mixed type Monge–Ampere equations (1994) Geometry in Partial Differential Equations, pp. 173-188. , World Scientific Pub Co Pte LtGarcia, R., Sotomayor, J., Differential Equations of Classical Geometry, A Qualitative Theory (2009), IMPAKolár̆, I., Michor, P.W., Slovák, J., Natural Operations in Differential Geometry (1993), p. vi + 434. , Berlin: Springer-VerlagKamber, F.W., Tondeur, P., Foliated Bundles and Characteristic Classes (1975), Springer Berlin HeidelbergBiswas, I., Flat partial connections on a three manifold equipped with a codimension one foliation (2000) Geom. Dedicata, 80 (1-3), pp. 65-72Michor, P., Topics in Differential Geometry (2008), Amer. Math. SocKobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I (1996), p. xii+329. , Wiley Classics Library, John Wiley & Sons, Inc., New York Reprint of the 1963 original, a Wiley-Interscience PublicationSharpe, R.W., Differential Geometry (2000), SpringerDubrovin, B.A., Fomenko, A.T., Novikov, S.P., Modern Geometry - Methods and Applications Part II. The Geometry and Topology of Manifolds (1985), Springer-VerlagDubrovin, B.A., Fomenko, A.T., Novikov, S.P., Modern Geometry - Methods and Applications Part III. Introduction to Homology Theory (1990), Springer-VerlagSpivak, M., A Comprehensive Introduction to Differential Geometry. Vol. 1–5. Third ed. with corrections, Vol. 3 (1999), p. ix + 314. , third ed. Houston, TX: Publish or Perishhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8926/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8926oai:repositorio.utb.edu.co:20.500.12585/89262023-05-25 11:42:14.302Repositorio Institucional UTBrepositorioutb@utb.edu.co