A generalization of the Gauss–Bonnet–Hopf–Poincaré formula for sections and branched sections of bundles
For a two-dimensional compact oriented Riemannian manifold (M,g), and a vector field V on M, the Hopf–Poincaré theorem combined with the Gauss–Bonnet theorem gives the Gauss–Bonnet–Hopf–Poincaré (GBHP) formula: ∑z∈Z(V)indz(V)= [Formula presented] ∫MKdσ, where Z(V) is the set of zeros of V, indz(V) i...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8926
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8926
- Palabra clave:
- Binary differential equation
Branched section
G-structure with singularities
Index of singular point
Singularity of section
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/