In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection
Arboviral diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses represent a major public health problem worldwide, especially in tropical areas where millions of infections occur every year. The aim of this research was to identify candidate molecules for the treatment of the...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9250
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9250
- Palabra clave:
- Antiviral
Chikungunya
Dengue
Virtual screening
Virus entry
Zika
Antrafenine
Conivaptan
Ergotamine
Itraconazole
Natamycin
Nilotinib
Novobiocin
Pranlukast
Viral protein
Antiviral activity
Arbovirus
Article
Chikungunya
Computer model
Crystallography
Dengue
Drug protein binding
Drug repositioning
Fluorescence analysis
Fluorescence microscopy
Huh-7 cell line
Human
Human cell
In vitro study
Priority journal
Virus capsid
Virus entry
Zika fever
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_7f62effb28607c5ecf6e5f7963273695 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9250 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection |
title |
In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection |
spellingShingle |
In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection Antiviral Chikungunya Dengue Virtual screening Virus entry Zika Antrafenine Conivaptan Ergotamine Itraconazole Natamycin Nilotinib Novobiocin Pranlukast Viral protein Antiviral activity Arbovirus Article Chikungunya Computer model Crystallography Dengue Drug protein binding Drug repositioning Fluorescence analysis Fluorescence microscopy Huh-7 cell line Human Human cell In vitro study Priority journal Virus capsid Virus entry Zika fever |
title_short |
In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection |
title_full |
In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection |
title_fullStr |
In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection |
title_full_unstemmed |
In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection |
title_sort |
In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection |
dc.subject.keywords.none.fl_str_mv |
Antiviral Chikungunya Dengue Virtual screening Virus entry Zika Antrafenine Conivaptan Ergotamine Itraconazole Natamycin Nilotinib Novobiocin Pranlukast Viral protein Antiviral activity Arbovirus Article Chikungunya Computer model Crystallography Dengue Drug protein binding Drug repositioning Fluorescence analysis Fluorescence microscopy Huh-7 cell line Human Human cell In vitro study Priority journal Virus capsid Virus entry Zika fever |
topic |
Antiviral Chikungunya Dengue Virtual screening Virus entry Zika Antrafenine Conivaptan Ergotamine Itraconazole Natamycin Nilotinib Novobiocin Pranlukast Viral protein Antiviral activity Arbovirus Article Chikungunya Computer model Crystallography Dengue Drug protein binding Drug repositioning Fluorescence analysis Fluorescence microscopy Huh-7 cell line Human Human cell In vitro study Priority journal Virus capsid Virus entry Zika fever |
description |
Arboviral diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses represent a major public health problem worldwide, especially in tropical areas where millions of infections occur every year. The aim of this research was to identify candidate molecules for the treatment of these diseases among the drugs currently available in the market, through in silico screening and subsequent in vitro evaluation with cell culture models of DENV and ZIKV infections. Numerous pharmaceutical compounds from antibiotics to chemotherapeutic agents presented high in silico binding affinity for the viral proteins, including ergotamine, antrafenine, natamycin, pranlukast, nilotinib, itraconazole, conivaptan and novobiocin. These five last compounds were tested in vitro, being pranlukast the one that exhibited the best antiviral activity. Further in vitro assays for this compound showed a significant inhibitory effect on DENV and ZIKV infection of human monocytic cells and human hepatocytes (Huh-7 cells) with potential abrogation of virus entry. Finally, intrinsic fluorescence analyses suggest that pranlukast may have some level of interaction with three viral proteins of DENV: envelope, capsid, and NS1. Due to its promising results, suitable accessibility in the market and reduced restrictions compared to other pharmaceuticals; the anti-asthmatic pranlukast is proposed as a drug candidate against DENV, ZIKV, and CHIKV, supporting further in vitro and in vivo assessment of the potential of this and other lead compounds that exhibited good affinity scores in silico as therapeutic agents or scaffolds for the development of new drugs against arboviral diseases. © 2019 Elsevier B.V. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:41:27Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:41:27Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Montes-Grajales D., Puerta-Guardo H., Espinosa D.A., Harris E., Caicedo-Torres W., Olivero-Verbel J. y Martínez-Romero E. (2020) In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Research; Vol. 173 |
dc.identifier.issn.none.fl_str_mv |
1663542 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9250 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.antiviral.2019.104668 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
55670024000 35409926100 20734251800 7403257174 55782426500 9736353600 7005113225 |
identifier_str_mv |
Montes-Grajales D., Puerta-Guardo H., Espinosa D.A., Harris E., Caicedo-Torres W., Olivero-Verbel J. y Martínez-Romero E. (2020) In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Research; Vol. 173 1663542 10.1016/j.antiviral.2019.104668 Universidad Tecnológica de Bolívar Repositorio UTB 55670024000 35409926100 20734251800 7403257174 55782426500 9736353600 7005113225 |
url |
https://hdl.handle.net/20.500.12585/9250 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075791199&doi=10.1016%2fj.antiviral.2019.104668&partnerID=40&md5=c0e0cf40a4eb953c14b268f2d79de8d4 Scopus2-s2.0-85075791199 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9250/1/httpsdoiorg101016jantiviral2019104668.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9250/4/httpsdoiorg101016jantiviral2019104668.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9250/5/httpsdoiorg101016jantiviral2019104668.pdf.jpg |
bitstream.checksum.fl_str_mv |
491cc5ca9c1467538e26342769c561ba 0315d2ed526d2f48e7fb2942a0fa707a 62f4762c45b83c79129b98324c0f854f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021586468995072 |
spelling |
2020-03-26T16:41:27Z2020-03-26T16:41:27Z2020Montes-Grajales D., Puerta-Guardo H., Espinosa D.A., Harris E., Caicedo-Torres W., Olivero-Verbel J. y Martínez-Romero E. (2020) In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection. Antiviral Research; Vol. 1731663542https://hdl.handle.net/20.500.12585/925010.1016/j.antiviral.2019.104668Universidad Tecnológica de BolívarRepositorio UTB55670024000354099261002073425180074032571745578242650097363536007005113225Arboviral diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses represent a major public health problem worldwide, especially in tropical areas where millions of infections occur every year. The aim of this research was to identify candidate molecules for the treatment of these diseases among the drugs currently available in the market, through in silico screening and subsequent in vitro evaluation with cell culture models of DENV and ZIKV infections. Numerous pharmaceutical compounds from antibiotics to chemotherapeutic agents presented high in silico binding affinity for the viral proteins, including ergotamine, antrafenine, natamycin, pranlukast, nilotinib, itraconazole, conivaptan and novobiocin. These five last compounds were tested in vitro, being pranlukast the one that exhibited the best antiviral activity. Further in vitro assays for this compound showed a significant inhibitory effect on DENV and ZIKV infection of human monocytic cells and human hepatocytes (Huh-7 cells) with potential abrogation of virus entry. Finally, intrinsic fluorescence analyses suggest that pranlukast may have some level of interaction with three viral proteins of DENV: envelope, capsid, and NS1. Due to its promising results, suitable accessibility in the market and reduced restrictions compared to other pharmaceuticals; the anti-asthmatic pranlukast is proposed as a drug candidate against DENV, ZIKV, and CHIKV, supporting further in vitro and in vivo assessment of the potential of this and other lead compounds that exhibited good affinity scores in silico as therapeutic agents or scaffolds for the development of new drugs against arboviral diseases. © 2019 Elsevier B.V.Universidad Tecnológica de Pereira, UTP: TRFCI-1P2016 National Institutes of Health, NIH National Institutes of Health, NIH: R01 AI24493 Department of Science, Information Technology and Innovation, Queensland Government, DSITI: 811-2018 Universidad Autónoma de Bucaramanga, UNABThe authors wish to thank the Administrative Department of Science, Technology and Innovation of Colombia [Grant: Colciencias No. 811-2018 ], Universidad Nacional Autónoma de México [Grant: Programa de Becas Posdoctorales en la UNAM 2016 ], Universidad Tecnológica de Bolívar [Grant: TRFCI-1P2016 ] and the National Institutes of Health [NIH grant R01 AI24493 ] for their financial support. Appendix AA continuación se relacionan los compuestos químicos y su número de registro CAS (Chemical Abstracts Service) antrafenine, 55300-29-3; conivaptan, 168626-94-6, 210101-16-9; ergotamine, 113-15-5, 52949-35-6; itraconazole, 84625-61-6; natamycin, 52882-37-8, 7681-93-8; nilotinib, 641571-10-0; novobiocin, 1476-53-5, 303-81-1, 39301-00-3, 4309-70-0; pranlukast, 103177-37-3Recurso electrónicoapplication/pdfengElsevier B.V.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075791199&doi=10.1016%2fj.antiviral.2019.104668&partnerID=40&md5=c0e0cf40a4eb953c14b268f2d79de8d4Scopus2-s2.0-85075791199In silico drug repurposing for the identification of potential candidate molecules against arboviruses infectioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1AntiviralChikungunyaDengueVirtual screeningVirus entryZikaAntrafenineConivaptanErgotamineItraconazoleNatamycinNilotinibNovobiocinPranlukastViral proteinAntiviral activityArbovirusArticleChikungunyaComputer modelCrystallographyDengueDrug protein bindingDrug repositioningFluorescence analysisFluorescence microscopyHuh-7 cell lineHumanHuman cellIn vitro studyPriority journalVirus capsidVirus entryZika feverMontes-Grajales D.Puerta-Guardo H.Espinosa D.A.Harris E.Caicedo-Torres W.Olivero-Verbel J.Martínez-Romero E.Abdulla, M.-H., Ruelas, D.S., Wolff, B., Snedecor, J., Lim, K.-C., Xu, F., Renslo, A.R., Caffrey, C.R., Drug discovery for schistosomiasis: hit and lead compounds identified in a library of known drugs by medium-throughput phenotypic screening (2009) PLoS Neglected Trop. Dis., 3, p. e478Afzal, O., Kumar, S., Haider, M.R., Ali, M.R., Kumar, R., Jaggi, M., Bawa, S., A review on anticancer potential of bioactive heterocycle quinoline (2015) Eur. J. Med. Chem., 97, pp. 871-910Aguiar, M., Stollenwerk, N., Dengvaxia: age as surrogate for serostatus (2018) Lancet Infect. Dis.Ahola, T., Merits, A., Functions of chikungunya virus nonstructural proteins (2016) Chikungunya Virus: Advances in Biology, Pathogenesis, and Treatment, pp. 75-98. , C.M. Okeoma Springer International Publishing ChamAkhrymuk, I., Kulemzin, S.V., Frolova, E.I., Evasion of the innate immune response: the old world alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II (2012) J. Virol., 86, pp. 7180-7191Allison, S.L., Schalich, J., Stiasny, K., Mandl, C.W., Heinz, F.X., Mutational evidence for an internal fusion peptide in flavivirus envelope protein E (2001) J. Virol., 75, pp. 4268-4275Annane, D., Decaux, G., Smith, N., Efficacy and safety of oral conivaptan, a vasopressin-receptor antagonist, evaluated in a randomized, controlled trial in patients with euvolemic or hypervolemic hyponatremia (2009) Am. J. Med. Sci., 337, pp. 28-36Balaguer, M.P., Fajardo, P., Gartner, H., Gomez-Estaca, J., Gavara, R., Almenar, E., Hernandez-Munoz, P., Functional properties and antifungal activity of films based on gliadins containing cinnamaldehyde and natamycin (2014) Int. J. Food Microbiol., 173, pp. 62-71Bastos, L.F.S., Coelho, M.M., Drug repositioning: playing dirty to kill pain (2014) CNS Drugs, 28, pp. 45-61Beatty, P.R., Puerta-Guardo, H., Killingbeck, S.S., Glasner, D.R., Hopkins, K., Harris, E., Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination (2015) Sci. Transl. Med., 7Bekerman, E., Einav, S., Combating emerging viral threats (2015) Science, 348, pp. 282-283Bekerman, E., Neveu, G., Shulla, A., Brannan, J., Pu, S.Y., Wang, S., Xiao, F., Einav, S., Anticancer kinase inhibitors impair intracellular viral trafficking and exert broad-spectrum antiviral effects (2017) J. Clin. Investig., 127, pp. 1338-1352Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Olga, K., Tasumi, M., The protein Data Bank. A computer-based archival file for macromolecular structures (1977) Eur. J. Biochem., 80, pp. 319-324Byrd, C.M., Dai, D., Grosenbach, D.W., Berhanu, A., Jones, K.F., Cardwell, K.B., Schneider, C., Jordan, R., A novel inhibitor of dengue virus replication that targets the capsid protein (2013) Antimicrob. Agents Chemother., 57, pp. 15-25Cabarcas-Montalvo, M., Maldonado-Rojas, W., Montes-Grajales, D., Bertel-Sevilla, A., Wagner-Döbler, I., Sztajer, H., Reck, M., Olivero-Verbel, J., Discovery of antiviral molecules for dengue: in silico search and biological evaluation (2016) Eur. J. Med. Chem., 110, pp. 87-97Calvo, E.P., Coronel-Ruiz, C., Velazco, S., Velandia-Romero, M., Castellanos, J.E., Diagnóstico diferencial dengue-chikungunya en pacientes pediátricos (2015) Biomedica, 36Carrilo-Muñoz, A.J., Tur, C., Torres, J., Seymour, A.C., In-vitro antifungal activity of sertaconazole, bifonazole, ketoconazole, and miconazole against yeasts of the Candida genus (1996) J. Antimicrob. Chemother., 37, pp. 815-819Chan, J.F.W., Yip, C.C.Y., Tsang, J.O.L., Tee, K.M., Cai, J.P., Chik, K.K.H., Zhu, Z., Yuen, K.Y., Differential cell line susceptibility to the emerging Zika virus: implications for disease pathogenesis, non-vector-borne human transmission and animal reservoirs (2016) Emerg. Microb. Infect., 5, p. e93Chant, C., Rybak, M.J., Quinupristin/dalfopristin (RP 59500): a new streptogramin antibiotic (1995) Ann. Pharmacother., 29, pp. 1022-1027Chen, Y., Maguire, T., Marks, R.M., Demonstration of binding of dengue virus envelope protein to target cells (1996) J. Virol., 70, pp. 8765-8772Cholo, M.C., Mothiba, M.T., Fourie, B., Anderson, R., Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline (2017) J. Antimicrob. Chemother., 72, pp. 338-353Crill, W.D., Roehrig, J.T., Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells (2001) J. Virol., 75, pp. 7769-7773Dai, L., Song, J., Lu, X., Deng, Y.Q., Musyoki, A.M., Cheng, H., Zhang, Y., Gao, G.F., Structures of the zika virus envelope protein and its complex with a flavivirus broadly protective antibody (2016) Cell Host Microbe, 19, pp. 696-704de Gara, C., Taylor, M., Hedges, A., Assessment of analgesic drugs in soft tissue injuries presenting to an accident and emergency department—a comparison of antrafenine, paracetamol and placebo (1982) Postgrad. Med. J., 58, pp. 489-492de Silva, A.M., Rey, F.A., Young, P.R., Hilgenfeld, R., Vasudevan, S.G., Viral entry and NS1 as potential antiviral drug targets (2018) Advances in Experimental Medicine and Biology, pp. 107-113Ebi, K.L., Nealon, J., Dengue in a changing climate (2016) Environ. Res., 151, pp. 115-123Eglen, R.M., Schneider, G., Bohm, H., Bohm, H.J., Schneider, G., High throughput screening and virtual screening: entry points to drug discovery. Virtual screen (2000) Bioact. Mol., 10, pp. 59-79Erbel, P., Schiering, N., D'Arcy, A., Renatus, M., Kroemer, M., Lim, S.P., Yin, Z., Hommel, U., Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus (2006) Nat. Struct. Mol. Biol., 13, pp. 372-373Finlay, A.C., Hobby, G.L., Hochstein, F., Lees, T.M., Lenert, T.F., Means, J.A., P'an, S.Y., Kane, J.H., Viomycin, a new antibiotic active against mycobacteria (1951) Am. Rev. Tuberc. Pulm. Dis., 63, pp. 1-3Flasche, S., Jit, M., Rodríguez-Barraquer, I., Coudeville, L., Recker, M., Koelle, K., Milne, G., Cummings, D.A.T., The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): a model comparison study (2016) PLoS Med., 13Freel Meyers, C.L., Oberthür, M., Anderson, J.W., Kahne, D., Walsh, C.T., Initial characterization of novobiocic acid noviosyl transferase activity of NovM in biosynthesis of the antibiotic novobiocin (2003) Biochemistry, 42, pp. 4179-4189Fros, J.J., Liu, W.J., Prow, N.A., Geertsema, C., Ligtenberg, M., Vanlandingham, D.L., Schnettler, E., Pijlman, G.P., Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling (2010) J. Virol., 84, pp. 10877-10887Fros, J.J., Major, L.D., Scholte, F.E.M., Gardner, J., van Hemert, M.J., Suhrbier, A., Pijlman, G.P., Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response (2015) J. Gen. Virol., 96, pp. 580-589Gardner, L.M., Bóta, A., Gangavarapu, K., Kraemer, M.U.G., Grubaugh, N.D., Inferring the risk factors behind the geographical spread and transmission of Zika in the Americas (2018) PLoS Neglected Trop. Dis., 12Garoff, H., Sjoberg, M., Cheng, R.H., Budding of alphaviruses (2004) Virus Res., 106, pp. 103-116Glasner, D.R., Puerta-Guardo, H., Beatty, P.R., Harris, E., The good, the bad, and the shocking: the multiple roles of dengue virus nonstructural protein 1 in protection and pathogenesis (2018) Annu. Rev. Virol., 5, pp. 227-253González-Molleda, L., Wang, Y., Yuan, Y., Potent antiviral activity of topoisomerase I and II inhibitors against Kaposi's sarcoma-associated herpesvirus (2012) Antimicrob. Agents Chemother., 56, pp. 893-902Guzman, M.G., Alvarez, M., Halstead, S.B., Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection (2013) Arch. Virol., 158, pp. 1445-1459Hallengärd, D., Kakoulidou, M., Lulla, A., Kümmerer, B.M., Johansson, D.X., Mutso, M., Lulla, V., Liljeström, P., Novel attenuated Chikungunya vaccine candidates elicit protective immunity in C57BL/6 mice (2014) J. Virol., 88, pp. 2858-2866Halstead, S.B., Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age (2017) Vaccine, 35, pp. 6355-6358Harrison, S.C., Viral membrane fusion (2015) Virology, 479, pp. 498-507Henß, L., Beck, S., Weidner, T., Biedenkopf, N., Sliva, K., Weber, C., Becker, S., Schnierle, B.S., Suramin is a potent inhibitor of Chikungunya and Ebola virus cell entry (2016) Virol. J., 13, p. 149Iakovlev, V.P., Kaplar-Vuchevats, M., Cefpiramide–a new cephalosporin antibiotic. Antibiot. i khimioterapiia = Antibiot (1994) chemoterapy [sic], 39, pp. 56-64Keam, S.J., Lyseng-Williamson, K.A., Goa, K.L., Korenblat, P.E., Lockey, R.F., Obase, Y., Rovati, G.E., Tamura, G., Pranlukast: a review of its use in the management of asthma (2003) DrugsKielian, M., Chanel-Vos, C., Liao, M., Alphavirus entry and membrane fusion (2010) VirusesKim, S., Kim, H., Ryu, Y., Lee, J., Efficacy and safety of modified pranlukast (Prakanon®) compared with pranlukast (Onon®): a randomized, open-label, crossover study (2016) ncbi.nlm.nih.gov, 10, pp. 36-45. , open respiratory, 2016, UKlumpp, K., Crépin, T., Capsid proteins of enveloped viruses as antiviral drug targets (2014) Curr. Opin. Virol., 5, pp. 63-71Kraus, A.A., Messer, W., Haymore, L.B., De Silva, A.M., Comparison of plaque- and flow cytometry-based methods for measuring dengue virus neutralization (2007) J. Clin. Microbiol., 45, pp. 3777-3780Langedijk, J., Continuous Innovation in the Drug Life Cycle (2016), ElsevierLaw, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A., Wishart, D.S., DrugBank 4.0: shedding new light on drug metabolism (2014) Nucleic Acids Res., 42, pp. D1091-D1097Lazear, H.M., Govero, J., Smith, A.M., Platt, D.J., Fernandez, E., Miner, J.J., Diamond, M.S., A mouse model of zika virus pathogenesis (2016) Cell Host Microbe, 19, pp. 720-730Liang, Q., Luo, Z., Zeng, J., Chen, W., Foo, S., Lee, S., Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy (2016) Cell, J.G.-C. stem, 19, pp. 663-671. , 2016, U ElsevierLim, S.P., Noble, C.G., Seh, C.C., Soh, T.S., El Sahili, A., Chan, G.K.Y., Lescar, J., Yokokawa, F., Potent allosteric dengue virus NS5 polymerase inhibitors: mechanism of action and resistance profiling (2016) PLoS Pathog., 12Liu-Helmersson, J., Quam, M., Wilder-Smith, A., Stenlund, H., Ebi, K., Massad, E., Rocklöv, J., Climate change and Aedes vectors: 21st century projections for dengue transmission in europe (2016) EBioMedicine, 7, pp. 267-277López-Camacho, C., Abbink, P., Larocca, R.A., Dejnirattisai, W., Boyd, M., Badamchi-Zadeh, A., Wallace, Z.R., Reyes-Sandoval, A., Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors (2018) nature.com, 9, p. 2441Low, J.G.H., Ooi, E.E., Vasudevan, S.G., Current status of dengue therapeutics research and development (2017) J. Infect. Dis., 215, pp. S96-S102Ma, D.-L., Chan, D.S.-H., Leung, C.-H., Drug repositioning by structure-based virtual screening (2013) Chem. Soc. Rev., 42, pp. 2130-2141Ma, L., Jones, C.T., Groesch, T.D., Kuhn, R.J., Post, C.B., Solution structure of dengue virus capsid protein reveals another fold (2004) Proc. Natl. Acad. Sci. United States Am., 101, pp. 3414-3419Makhatadze, G.I., Privalov, P.L., Energetics of protein structure (1995) Adv. Protein Chem., 47, pp. 307-425Marsh, M., Pelchen-Matthews, A., Entry of animal viruses into cells (1993) Rev. Med. Virol., 3, pp. 173-185Más, V., Melero, J.A., Entry of enveloped viruses into host cells: membrane fusion (2013) Structure and Physics of Viruses: an Integrated Textbook, pp. 467-487. , M.G. Mateu Springer Netherlands DordrechtMayer, S.V., Tesh, R.B., Vasilakis, N., The emergence of arthropod-borne viral diseases: a global prospective on dengue, chikungunya and zika fevers (2017) Acta Trop., 166, pp. 155-163Mazzola, E.P., Melin, J.A., Wayland, L.G., 13C-NMR spectroscopy of three tetracycline antibiotics: minocycline hydrochloride, meclocycline, and rolitetracycline (1980) J. Pharm. Sci., 69, pp. 229-230Mehndiratta, M.M., Wadhai, S.A., Tyagi, B.K., Gulati, N.S., Sinha, M., Drug repositioning (2016) Int. J. Epilepsy, 3, pp. 91-94Mishra, P., Kumar, A., Mamidi, P., Kumar, S., Basantray, I., Saswat, T., Das, I., Chattopadhyay, S., Inhibition of chikungunya virus replication by 1-[(2-Methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea(MBZM-N-IBT) (2016) Sci. Rep., 6, p. 20122Modis, Y., Ogata, S., Clements, D., Harrison, S.C., Structure of the dengue virus envelope protein after membrane fusion (2004) Nature, 427, pp. 313-319Montes-Grajales, D., Bernardes, G.J.L., Olivero-Verbel, J., Urban endocrine disruptors targeting breast cancer proteins (2016) Chem. Res. Toxicol., 29, pp. 150-161Montes-Grajales, D., Olivero-Verbel, J., Computer-aided identification of novel protein targets of bisphenol A (2013) Toxicol. Lett., 222, pp. 312-320Montes-Grajales, D., Olivero-Verbel, J., Cabarcas-Montalvo, M., DDT and derivatives may target insulin pathway proteins (2013) J. Brazilian Chem. Soc.Montoya, M., Collins, M., Dejnirattisai, W., Katzelnick, L.C., Puerta-Guardo, H., Jadi, R., Schildhauer, S., Harris, E., Longitudinal analysis of antibody cross-neutralization following zika virus and dengue virus infection in Asia and the Americas (2018) J. Infect. Dis., 218, pp. 536-545Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility (2009) J. Comput. Chem., 30, pp. 2785-2791Nolting, A., Costa, T.D., Rand, K.H., Derendorf, H., Pharmacokinetic-pharmacodynamic modeling of the antibiotic effect of piperacillin in vitro (1996) Pharm. Res., 13, pp. 91-96O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R., Open Babel: an open chemical toolbox (2011) J. Cheminf., 3, p. 33O'Connor, K.A., Roth, B.L., Finding new tricks for old drugs: an efficient route for public-sector drug discovery (2005) Nat. Rev. Drug Discov., 4, pp. 1005-1014Oliveira, A.F., Teixeira, R.R., Oliveira, A.S., Souza, A.P., Silva, M.L., Paula, S.O., Potential antivirals: natural products targeting replication enzymes of dengue and chikungunya viruses (2017) MolOliveira, E.R.A., Mohana-Borges, R., de Alencastro, R.B., Horta, B.A.C., The flavivirus capsid protein: structure, function and perspectives towards drug design (2017) Virus Res., 227, pp. 115-123Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., Varma, A.K., Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing (2010) PLoS One, 5Pfaller, M.A., Flamm, R.K., Duncan, L.R., Mendes, R.E., Jones, R.N., Sader, H.S., Antimicrobial activity of tigecycline and cefoperazone/sulbactam tested against 18,386 Gram-negative organisms from Europe and the Asia-Pacific region (2013–2014) (2017) Diagn. Microbiol. Infect. Dis., 88, pp. 177-183Pu, S.Y., Xiao, F., Schor, S., Bekerman, E., Zanini, F., Barouch-Bentov, R., Nagamine, C.M., Einav, S., Feasibility and biological rationale of repurposing sunitinib and erlotinib for dengue treatment (2018) Antivir. Res., 155, pp. 67-75Puerta-Guardo, H., Glasner, D.R., Espinosa, D.A., Biering, S.B., Patana, M., Ratnasiri, K., Wang, C., Harris, E., Flavivirus NS1 triggers tissue-specific vascular endothelial dysfunction reflecting disease tropism (2019) Cell Rep., 26, pp. 1598-1613. , e8Puerta-Guardo, H., Tabata, T., Petitt, M., Dimitrova, M., Glasner, D.R., Pereira, L., Harris, E., Zika virus non-structural protein 1 disrupts glycosaminoglycans and causes permeability in developing human placentas (2019) J. Infect. Dis.Pushpakom, S., Iorio, F., Eyers, P.A., Escott, K.J., Hopper, S., Wells, A., Doig, A., Pirmohamed, M., Drug repurposing: progress, challenges and recommendations (2018) Nat. Rev. Drug Discov.R Core Team, A Language and Environment for Statistical Computing (2016), R Foundation for statistical computing Vienna, Austria 2015Rodenhuis-Zybert, I.A., Wilschut, J., Smit, J.M., Dengue virus life cycle: viral and host factors modulating infectivity (2010) Cell. Mol. Life Sci., 67, pp. 2773-2786Roy, C.J., Adams, A.P., Wang, E., Plante, K., Gorchakov, R., Seymour, R.L., Vinet-Oliphant, H., Weaver, S.C., Chikungunya vaccine candidate is highly attenuated and protects nonhuman primates against telemetrically monitored disease following a single dose (2014) J. Infect. Dis., 209, pp. 1891-1899Samsa, M.M., Mondotte, J.A., Iglesias, N.G., Assunção-Miranda, I., Barbosa-Lima, G., Da Poian, A.T., Bozza, P.T., Gamarnik, A.V., Dengue virus capsid protein usurps lipid droplets for viral particle formation (2009) PLoS Pathog.Samsa, M.M., Mondotte, J.A., Iglesias, N.G., Assunção-Miranda, I., Barbosa-Lima, G., Da Poian, A.T., Bozza, P.T., Gamarnik, A.V., Dengue virus capsid protein usurps lipid droplets for viral particle formation (2009) PLoS Pathog., 5Scherwitzl, I., Mongkolsapaja, J., Screaton, G., Recent advances in human flavivirus vaccines (2017) Curr. Opin. Virol., 23, pp. 95-101Schneider, M., Korzeniewski, N., Merkle, K., Schüler, J., Grüllich, C., Hadaschik, B., Hohenfellner, M., Duensing, S., The tyrosine kinase inhibitor nilotinib has antineoplastic activity in prostate cancer cells but up-regulates the ERK survival signal—implications for targeted therapies1Equal contributions (2015) Urol. Oncol. Semin. Orig. Investig., 33. , 72.e1-72.e7Seeliger, D., de Groot, B.L., Ligand docking and binding site analysis with PyMOL and Autodock/Vina (2010) J. Comput. Aided Mol. Des., 24, pp. 417-422Sekiguchi, J., Shuman, S., Novobiocin inhibits vaccinia virus replication by blocking virus assembly (1997) Virology, 235, pp. 129-137Smalley, C., Erasmus, J.H., Chesson, C.B., Beasley, D.W.C., Status of research and development of vaccines for chikungunya (2016) Vaccine, 34, pp. 2976-2981Soto-Acosta, R., Mosso, C., Cervantes-Salazar, M., Puerta-Guardo, H., Medina, F., Favari, L., Ludert, J.E., Del Angel, R.M., The increase in cholesterol levels at early stages after dengue virus infection correlates with an augment in LDL particle uptake and HMG-CoA reductase activity (2013) Virology, 442, pp. 132-147Stein, C.A., LaRocca, R.V., Thomas, R., McAtee, N., Myers, C.E., Suramin: an anticancer drug with a unique mechanism of action (1989) J. Clin. Oncol., 7Subudhi, B.B., Chattopadhyay, S., Mishra, P., Kumar, A., Current strategies for inhibition of Chikungunya infection (2018) VirusesTfelt-Hansen, P.C., Koehler, P.J., History of the use of ergotamine and dihydroergotamine in migraine from 1906 and onward (2008) Cephalalgia, 28, pp. 877-886Tomlinson, S.M., Malmstrom, R.D., Russo, A., Mueller, N., Pang, Y.-P., Watowich, S.J., Structure-based discovery of dengue virus protease inhibitors (2009) Antivir. Res., 82, pp. 110-114Trott, O., Olson, A.J., AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading (2010) J. Comput. Chem., 31, pp. 455-461Villegas, L.E.M., Campolina, T.B., Barnabe, N.R., Orfano, A.S., Chaves, B.A., Norris, D.E., Pimenta, P.F.P., Secundino, N.F.C., Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis (2018) PLoS One, 13Voss, J.E., Vaney, M.-C., Duquerroy, S., Vonrhein, C., Girard-Blanc, C., Crublet, E., Thompson, A., Rey, F.A., Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography (2010) Nature, 468, pp. 709-712Walker, T., Jeffries, C.L., Mansfield, K.L., Johnson, N., Mosquito cell lines: history, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom (2014) Parasites Vectors, 7, p. 382Warnes, G.R., Bolker, B., Bonebakker, L., Gentleman, R., Huber, W., Liaw, A., Lumley, T., Moeller, S., Gplots: Various R Programming Tools for Plotting Data (2009), R Packag. versionWeaver, S.C., Arrival of chikungunya virus in the new world: prospects for spread and impact on public health (2014) PLoS Neglected Trop. Dis., 8Weber, C., Berberich, E., von Rhein, C., Henß, L., Hildt, E., Schnierle, B.S., Identification of functional determinants in the chikungunya virus E2 protein (2017) PLoS Neglected Trop. Dis., 11Whitehead, S.S., Subbarao, K., Which dengue vaccine approach is the most promising, and should we Be concerned about enhanced disease after vaccination?: the risks of incomplete immunity to dengue virus revealed by vaccination (2017) Cold Spring Harb. Perspect. Biol.Wolber, G., Langer, T., LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters (2005) J. Chem. Inf. Model., 45, pp. 160-169Wolf, D., Djian, E., Beider, K., Shimoni, A., Nagler, A., Nilotinib exhibits an in vitro antiviral activity against human cytomegalovirus (HCMV): potential clinical applications (2012) Am. Soc. Hematol., 120, p. 4666World Health Organization, Zika virus (2018), https://www.who.int/news-room/fact-sheets/detail/zika-virus, [WWW Document] accessed 7.10.19World Health Organization, Chikungunya (2017), https://www.who.int/emergencies/diseases/chikungunya/en/, [WWW Document]World Health Organization, Facsheet dengue and severe dengue (2016), http://www.who.int/mediacentre/factsheets/fs117/en/, [WWW Document]. July 2016Xie, X., Zou, J., Wang, Q.Y., Shi, P.Y., Targeting dengue virus NS4B protein for drug discovery (2015) Antivir. Res.Yap, T.L., Xu, T., Chen, Y.-L., Malet, H., Egloff, M.-P., Canard, B., Vasudevan, S.G., Lescar, J., Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution (2007) J. Virol., 81, pp. 4753-4765Young, T., Abel, R., Kim, B., Berne, B.J., Friesner, R.A., Motifs for molecular recognition exploiting hydrophobic enclosure in protein–ligand binding (2007) Proc. Natl. Acad. Sci., 104, pp. 808-813Zhang, J., Li, C., Lin, Y., Shao, Y., Li, S., Computational drug repositioning using collaborative filtering via multi-source fusion (2017) Expert Syst. Appl.Zhang, X., Jia, R., Shen, H., Wang, M., Yin, Z., Cheng, A., Structures and functions of the envelope glycoprotein in flavivirus infections (2017) Viruses, 9, p. 338Zuckerman, J.M., Tunkel, A.R., Itraconazole: a new triazole antifungal agent (1994) Infect. Control Hosp. Epidemiol., 15, pp. 397-410http://purl.org/coar/resource_type/c_6501ORIGINALhttpsdoiorg101016jantiviral2019104668.pdfapplication/pdf3594905https://repositorio.utb.edu.co/bitstream/20.500.12585/9250/1/httpsdoiorg101016jantiviral2019104668.pdf491cc5ca9c1467538e26342769c561baMD51TEXThttpsdoiorg101016jantiviral2019104668.pdf.txthttpsdoiorg101016jantiviral2019104668.pdf.txtExtracted texttext/plain70318https://repositorio.utb.edu.co/bitstream/20.500.12585/9250/4/httpsdoiorg101016jantiviral2019104668.pdf.txt0315d2ed526d2f48e7fb2942a0fa707aMD54THUMBNAILhttpsdoiorg101016jantiviral2019104668.pdf.jpghttpsdoiorg101016jantiviral2019104668.pdf.jpgGenerated Thumbnailimage/jpeg95915https://repositorio.utb.edu.co/bitstream/20.500.12585/9250/5/httpsdoiorg101016jantiviral2019104668.pdf.jpg62f4762c45b83c79129b98324c0f854fMD5520.500.12585/9250oai:repositorio.utb.edu.co:20.500.12585/92502020-10-23 05:17:33.029Repositorio Institucional UTBrepositorioutb@utb.edu.co |