Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach

This paper presents a nonlinear analysis, control, and comparison of controllers based on the dynamical model of the reaction wheel pendulum (RWP) in a tutorial style. Classical methodologies such as proportional integral derivative (PID) control and state variables feedback control are explored. Ly...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8722
Acceso en línea:
https://hdl.handle.net/20.500.12585/8722
Palabra clave:
Control Lyapunov functions
Feedback control
Proportional-integral-derivative
Reaction wheel pendulum
Stability analysis
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_6b1efb1a21fbbfc523a9b5ef7a0410f1
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8722
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
title Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
spellingShingle Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
Control Lyapunov functions
Feedback control
Proportional-integral-derivative
Reaction wheel pendulum
Stability analysis
title_short Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
title_full Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
title_fullStr Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
title_full_unstemmed Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
title_sort Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
dc.subject.keywords.none.fl_str_mv Control Lyapunov functions
Feedback control
Proportional-integral-derivative
Reaction wheel pendulum
Stability analysis
topic Control Lyapunov functions
Feedback control
Proportional-integral-derivative
Reaction wheel pendulum
Stability analysis
description This paper presents a nonlinear analysis, control, and comparison of controllers based on the dynamical model of the reaction wheel pendulum (RWP) in a tutorial style. Classical methodologies such as proportional integral derivative (PID) control and state variables feedback control are explored. Lyapunov's method is proposed to analyze the stability of the proposed nonlinear controllers, and it is also used to design control laws guaranteeing globally asymptotically stability conditions in closed-loop. A swing up strategy is also included to bring the pendulum bar to the desired operating zone at the vertical upper position from an arbitrary initial location. Simulation results show that it is possible to obtain the same dynamical behavior of the RWP system adjusting the control gains adequately. All simulations were conducted via MATLAB Ordinary Differential Equation packages. © 2019 Karabuk University
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:09Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:09Z
dc.date.issued.none.fl_str_mv 2019
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.none.fl_str_mv Artículo
dc.identifier.citation.none.fl_str_mv Engineering Science and Technology, an International Journal
dc.identifier.issn.none.fl_str_mv 2215-0986
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8722
dc.identifier.doi.none.fl_str_mv 10.1016/j.jestch.2019.03.004
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Engineering Science and Technology, an International Journal
2215-0986
10.1016/j.jestch.2019.03.004
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8722
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85064984148&doi=10.1016%2fj.jestch.2019.03.004&partnerID=40&md5=e21ac2582d93d2864351de9db73493f6
Scopus 56919564100
Scopus 57191493648
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/1/DOI10_1016j_jestch_2019_03_004.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/4/DOI10_1016j_jestch_2019_03_004.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/5/DOI10_1016j_jestch_2019_03_004.pdf.jpg
bitstream.checksum.fl_str_mv e70e4feae6dbdb8a45d53af9502a85f7
032befe0977824ccbd0d064edd1ab0a5
4d0e636f9481381218e953ffea1ed2ad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021707499831296
spelling 2019-11-06T19:05:09Z2019-11-06T19:05:09Z2019Engineering Science and Technology, an International Journal2215-0986https://hdl.handle.net/20.500.12585/872210.1016/j.jestch.2019.03.004Universidad Tecnológica de BolívarRepositorio UTBThis paper presents a nonlinear analysis, control, and comparison of controllers based on the dynamical model of the reaction wheel pendulum (RWP) in a tutorial style. Classical methodologies such as proportional integral derivative (PID) control and state variables feedback control are explored. Lyapunov's method is proposed to analyze the stability of the proposed nonlinear controllers, and it is also used to design control laws guaranteeing globally asymptotically stability conditions in closed-loop. A swing up strategy is also included to bring the pendulum bar to the desired operating zone at the vertical upper position from an arbitrary initial location. Simulation results show that it is possible to obtain the same dynamical behavior of the RWP system adjusting the control gains adequately. All simulations were conducted via MATLAB Ordinary Differential Equation packages. © 2019 Karabuk UniversityRecurso electrónicoapplication/pdfengElsevier B.V.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85064984148&doi=10.1016%2fj.jestch.2019.03.004&partnerID=40&md5=e21ac2582d93d2864351de9db73493f6Scopus 56919564100Scopus 57191493648Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approachinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Control Lyapunov functionsFeedback controlProportional-integral-derivativeReaction wheel pendulumStability analysisMontoya, O.D.Gil-González, WalterBapiraju, B., Srinivas, K.N., Kumar, P.P., Behera, L., On balancing control strategies for a reaction wheel pendulum (2004) Proceedings of the IEEE INDICON 2004. First India Annual Conference, pp. 199-204Block, D.J., Åström, K.J., Spong, M.W., The reaction wheel pendulum (2007) Synth. Lectures Control Mech., 1 (1), pp. 1-105Correa, V.D., Escobar, D.G.A., Fuzzy control of an inverted pendulum Driven by a reaction wheel using a trajectory tracking scheme (2017) TecnoLogicas, 20 (39), pp. 1-13Ding, B., Ding, C., Recurrence and LaSalle invariance principle (2016) Syst. Control Lett., 93, pp. 64-68El-Nagar, A.M., El-Bardini, M., Practical Implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller (2014) Ain Shams Eng. J., 5 (2), pp. 475-487El-Nagar, A.M., El-Bardini, M., EL-Rabaie, N.M., Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller (2014) Alexandria Eng. J., 53 (1), pp. 23-32Irfan, S., Mehmood, A., Razzaq, M.T., Iqbal, J., Advanced sliding mode control techniques for Inverted Pendulum: modelling and simulation (2018) Eng. Sci. Technol. Int. J., 21 (4), pp. 753-759Khalil, H., Nonlinear Systems. Always Learning (2013), Pearson Education, LimitedLee, J., Mukherjee, R., Khalil, H.K., Output feedback stabilization of inverted pendulum on a cart in the presence of uncertainties (2015) Automatica, 54, pp. 146-157Lin, K.-J., Stabilization of uncertain fuzzy control systems via a new descriptor system approach (2012) Comput. Math. Appl., 64 (5), pp. 1170-1178Liu, Y., Yu, H., A survey of underactuated mechanical systems (2013) IET Control Theory Appl., 7 (7), pp. 921-935Mahmoodabadi, M., Jahanshahi, H., Multi-objective optimized fuzzy-PID controllers for fourth order nonlinear systems (2016) Eng. Sci. Technol. Int. J., 19 (2), pp. 1084-1098Montoya, O.D., Grisales-Noreña, L.F., Correa-Ramírez, V.D., Giraldo-Buitrago, D., Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables (2014) Tecno Lógicas, 17 (32), pp. 33-46Montoya, O.D., Ramírez, C.A., Grisales, L.F., Global control of reaction wheel pendulum using artificial neural networks and extended linearization (2017) Sci. Tech., 22 (20), pp. 130-140Olivares, M., Albertos, P., Linear control of the flywheel inverted pendulum (2014) ISA Trans., 53 (5), pp. 1396-1403. , iCCA 2013Perko, L., Differential Equations and Dynamical Systems. Texts in Applied Mathematics (2013), Springer New YorkRyalat, M., Laila, D.S., A simplified IDA-PBC design for underactuated mechanical systems with applications (2016) Eur. J. Control, 27, pp. 1-16Sanfelice, R.G., On the existence of control Lyapunov functions and state-feedback laws for hybrid systems (2013) IEEE Trans. Automat. Control, 58 (12), pp. 3242-3248Spong, M.W., Corke, P., Lozano, R., Nonlinear control of the reaction wheel pendulum (2001) Automatica, 37 (11), pp. 1845-1851Srinivas, K., Behera, L., Swing-up control strategies for a reaction wheel pendulum (2008) Int. J. Syst. Sci., 39 (12), pp. 1165-1177Valenzuela, J.G., Montoya, O.D., Giraldo-Buitrago, D., Local control of reaction wheel pendulum using fuzzy logic (2013) Sci. Tech., 18 (4), pp. 623-632Vidyasagar, M., Nonlinear Systems Analysis (2002), SIAMhttp://purl.org/coar/resource_type/c_6501ORIGINALDOI10_1016j_jestch_2019_03_004.pdfapplication/pdf912760https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/1/DOI10_1016j_jestch_2019_03_004.pdfe70e4feae6dbdb8a45d53af9502a85f7MD51TEXTDOI10_1016j_jestch_2019_03_004.pdf.txtDOI10_1016j_jestch_2019_03_004.pdf.txtExtracted texttext/plain39906https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/4/DOI10_1016j_jestch_2019_03_004.pdf.txt032befe0977824ccbd0d064edd1ab0a5MD54THUMBNAILDOI10_1016j_jestch_2019_03_004.pdf.jpgDOI10_1016j_jestch_2019_03_004.pdf.jpgGenerated Thumbnailimage/jpeg120248https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/5/DOI10_1016j_jestch_2019_03_004.pdf.jpg4d0e636f9481381218e953ffea1ed2adMD5520.500.12585/8722oai:repositorio.utb.edu.co:20.500.12585/87222023-05-26 10:21:32.464Repositorio Institucional UTBrepositorioutb@utb.edu.co