Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach
This paper presents a nonlinear analysis, control, and comparison of controllers based on the dynamical model of the reaction wheel pendulum (RWP) in a tutorial style. Classical methodologies such as proportional integral derivative (PID) control and state variables feedback control are explored. Ly...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8722
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8722
- Palabra clave:
- Control Lyapunov functions
Feedback control
Proportional-integral-derivative
Reaction wheel pendulum
Stability analysis
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_6b1efb1a21fbbfc523a9b5ef7a0410f1 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8722 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach |
title |
Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach |
spellingShingle |
Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach Control Lyapunov functions Feedback control Proportional-integral-derivative Reaction wheel pendulum Stability analysis |
title_short |
Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach |
title_full |
Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach |
title_fullStr |
Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach |
title_full_unstemmed |
Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach |
title_sort |
Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approach |
dc.subject.keywords.none.fl_str_mv |
Control Lyapunov functions Feedback control Proportional-integral-derivative Reaction wheel pendulum Stability analysis |
topic |
Control Lyapunov functions Feedback control Proportional-integral-derivative Reaction wheel pendulum Stability analysis |
description |
This paper presents a nonlinear analysis, control, and comparison of controllers based on the dynamical model of the reaction wheel pendulum (RWP) in a tutorial style. Classical methodologies such as proportional integral derivative (PID) control and state variables feedback control are explored. Lyapunov's method is proposed to analyze the stability of the proposed nonlinear controllers, and it is also used to design control laws guaranteeing globally asymptotically stability conditions in closed-loop. A swing up strategy is also included to bring the pendulum bar to the desired operating zone at the vertical upper position from an arbitrary initial location. Simulation results show that it is possible to obtain the same dynamical behavior of the RWP system adjusting the control gains adequately. All simulations were conducted via MATLAB Ordinary Differential Equation packages. © 2019 Karabuk University |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-06T19:05:09Z |
dc.date.available.none.fl_str_mv |
2019-11-06T19:05:09Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.none.fl_str_mv |
Artículo |
dc.identifier.citation.none.fl_str_mv |
Engineering Science and Technology, an International Journal |
dc.identifier.issn.none.fl_str_mv |
2215-0986 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8722 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.jestch.2019.03.004 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
identifier_str_mv |
Engineering Science and Technology, an International Journal 2215-0986 10.1016/j.jestch.2019.03.004 Universidad Tecnológica de Bolívar Repositorio UTB |
url |
https://hdl.handle.net/20.500.12585/8722 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85064984148&doi=10.1016%2fj.jestch.2019.03.004&partnerID=40&md5=e21ac2582d93d2864351de9db73493f6 Scopus 56919564100 Scopus 57191493648 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/1/DOI10_1016j_jestch_2019_03_004.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/4/DOI10_1016j_jestch_2019_03_004.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/5/DOI10_1016j_jestch_2019_03_004.pdf.jpg |
bitstream.checksum.fl_str_mv |
e70e4feae6dbdb8a45d53af9502a85f7 032befe0977824ccbd0d064edd1ab0a5 4d0e636f9481381218e953ffea1ed2ad |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021707499831296 |
spelling |
2019-11-06T19:05:09Z2019-11-06T19:05:09Z2019Engineering Science and Technology, an International Journal2215-0986https://hdl.handle.net/20.500.12585/872210.1016/j.jestch.2019.03.004Universidad Tecnológica de BolívarRepositorio UTBThis paper presents a nonlinear analysis, control, and comparison of controllers based on the dynamical model of the reaction wheel pendulum (RWP) in a tutorial style. Classical methodologies such as proportional integral derivative (PID) control and state variables feedback control are explored. Lyapunov's method is proposed to analyze the stability of the proposed nonlinear controllers, and it is also used to design control laws guaranteeing globally asymptotically stability conditions in closed-loop. A swing up strategy is also included to bring the pendulum bar to the desired operating zone at the vertical upper position from an arbitrary initial location. Simulation results show that it is possible to obtain the same dynamical behavior of the RWP system adjusting the control gains adequately. All simulations were conducted via MATLAB Ordinary Differential Equation packages. © 2019 Karabuk UniversityRecurso electrónicoapplication/pdfengElsevier B.V.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85064984148&doi=10.1016%2fj.jestch.2019.03.004&partnerID=40&md5=e21ac2582d93d2864351de9db73493f6Scopus 56919564100Scopus 57191493648Nonlinear analysis and control of a reaction wheel pendulum: Lyapunov-based approachinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Control Lyapunov functionsFeedback controlProportional-integral-derivativeReaction wheel pendulumStability analysisMontoya, O.D.Gil-González, WalterBapiraju, B., Srinivas, K.N., Kumar, P.P., Behera, L., On balancing control strategies for a reaction wheel pendulum (2004) Proceedings of the IEEE INDICON 2004. First India Annual Conference, pp. 199-204Block, D.J., Åström, K.J., Spong, M.W., The reaction wheel pendulum (2007) Synth. Lectures Control Mech., 1 (1), pp. 1-105Correa, V.D., Escobar, D.G.A., Fuzzy control of an inverted pendulum Driven by a reaction wheel using a trajectory tracking scheme (2017) TecnoLogicas, 20 (39), pp. 1-13Ding, B., Ding, C., Recurrence and LaSalle invariance principle (2016) Syst. Control Lett., 93, pp. 64-68El-Nagar, A.M., El-Bardini, M., Practical Implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller (2014) Ain Shams Eng. J., 5 (2), pp. 475-487El-Nagar, A.M., El-Bardini, M., EL-Rabaie, N.M., Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller (2014) Alexandria Eng. J., 53 (1), pp. 23-32Irfan, S., Mehmood, A., Razzaq, M.T., Iqbal, J., Advanced sliding mode control techniques for Inverted Pendulum: modelling and simulation (2018) Eng. Sci. Technol. Int. J., 21 (4), pp. 753-759Khalil, H., Nonlinear Systems. Always Learning (2013), Pearson Education, LimitedLee, J., Mukherjee, R., Khalil, H.K., Output feedback stabilization of inverted pendulum on a cart in the presence of uncertainties (2015) Automatica, 54, pp. 146-157Lin, K.-J., Stabilization of uncertain fuzzy control systems via a new descriptor system approach (2012) Comput. Math. Appl., 64 (5), pp. 1170-1178Liu, Y., Yu, H., A survey of underactuated mechanical systems (2013) IET Control Theory Appl., 7 (7), pp. 921-935Mahmoodabadi, M., Jahanshahi, H., Multi-objective optimized fuzzy-PID controllers for fourth order nonlinear systems (2016) Eng. Sci. Technol. Int. J., 19 (2), pp. 1084-1098Montoya, O.D., Grisales-Noreña, L.F., Correa-Ramírez, V.D., Giraldo-Buitrago, D., Global control of reaction wheel pendulum through energy regulation and extended linearization of the state variables (2014) Tecno Lógicas, 17 (32), pp. 33-46Montoya, O.D., Ramírez, C.A., Grisales, L.F., Global control of reaction wheel pendulum using artificial neural networks and extended linearization (2017) Sci. Tech., 22 (20), pp. 130-140Olivares, M., Albertos, P., Linear control of the flywheel inverted pendulum (2014) ISA Trans., 53 (5), pp. 1396-1403. , iCCA 2013Perko, L., Differential Equations and Dynamical Systems. Texts in Applied Mathematics (2013), Springer New YorkRyalat, M., Laila, D.S., A simplified IDA-PBC design for underactuated mechanical systems with applications (2016) Eur. J. Control, 27, pp. 1-16Sanfelice, R.G., On the existence of control Lyapunov functions and state-feedback laws for hybrid systems (2013) IEEE Trans. Automat. Control, 58 (12), pp. 3242-3248Spong, M.W., Corke, P., Lozano, R., Nonlinear control of the reaction wheel pendulum (2001) Automatica, 37 (11), pp. 1845-1851Srinivas, K., Behera, L., Swing-up control strategies for a reaction wheel pendulum (2008) Int. J. Syst. Sci., 39 (12), pp. 1165-1177Valenzuela, J.G., Montoya, O.D., Giraldo-Buitrago, D., Local control of reaction wheel pendulum using fuzzy logic (2013) Sci. Tech., 18 (4), pp. 623-632Vidyasagar, M., Nonlinear Systems Analysis (2002), SIAMhttp://purl.org/coar/resource_type/c_6501ORIGINALDOI10_1016j_jestch_2019_03_004.pdfapplication/pdf912760https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/1/DOI10_1016j_jestch_2019_03_004.pdfe70e4feae6dbdb8a45d53af9502a85f7MD51TEXTDOI10_1016j_jestch_2019_03_004.pdf.txtDOI10_1016j_jestch_2019_03_004.pdf.txtExtracted texttext/plain39906https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/4/DOI10_1016j_jestch_2019_03_004.pdf.txt032befe0977824ccbd0d064edd1ab0a5MD54THUMBNAILDOI10_1016j_jestch_2019_03_004.pdf.jpgDOI10_1016j_jestch_2019_03_004.pdf.jpgGenerated Thumbnailimage/jpeg120248https://repositorio.utb.edu.co/bitstream/20.500.12585/8722/5/DOI10_1016j_jestch_2019_03_004.pdf.jpg4d0e636f9481381218e953ffea1ed2adMD5520.500.12585/8722oai:repositorio.utb.edu.co:20.500.12585/87222023-05-26 10:21:32.464Repositorio Institucional UTBrepositorioutb@utb.edu.co |