ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU
To improve the performance of Intensive Care Units (ICUs), the field of bio-statistics has developed scores which try to predict the likelihood of negative outcomes. These help evaluate the effectiveness of treatments and clinical practice, and also help to identify patients with unexpected outcomes...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8995
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8995
- Palabra clave:
- Deep learning
ICU
MIMIC-III
Shapley values
Deep learning
Forecasting
Game theory
Intensive care units
Clinical practices
Coalitional game theory
Medical information
MIMIC-III
Relevant features
Shapley value
Sub-optimal performance
Traditional techniques
Deep neural networks
Adoption
Article
Deep learning
Game
Human
Intensive care unit
Medical information
Mortality
Prediction
Deep neural network
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_5dd5a420076ab3c2709b41b282a25926 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8995 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU |
title |
ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU |
spellingShingle |
ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU Deep learning ICU MIMIC-III Shapley values Deep learning Forecasting Game theory Intensive care units Clinical practices Coalitional game theory Medical information MIMIC-III Relevant features Shapley value Sub-optimal performance Traditional techniques Deep neural networks Adoption Article Deep learning Game Human Intensive care unit Medical information Mortality Prediction Deep neural network |
title_short |
ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU |
title_full |
ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU |
title_fullStr |
ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU |
title_full_unstemmed |
ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU |
title_sort |
ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU |
dc.subject.keywords.none.fl_str_mv |
Deep learning ICU MIMIC-III Shapley values Deep learning Forecasting Game theory Intensive care units Clinical practices Coalitional game theory Medical information MIMIC-III Relevant features Shapley value Sub-optimal performance Traditional techniques Deep neural networks Adoption Article Deep learning Game Human Intensive care unit Medical information Mortality Prediction Deep neural network |
topic |
Deep learning ICU MIMIC-III Shapley values Deep learning Forecasting Game theory Intensive care units Clinical practices Coalitional game theory Medical information MIMIC-III Relevant features Shapley value Sub-optimal performance Traditional techniques Deep neural networks Adoption Article Deep learning Game Human Intensive care unit Medical information Mortality Prediction Deep neural network |
description |
To improve the performance of Intensive Care Units (ICUs), the field of bio-statistics has developed scores which try to predict the likelihood of negative outcomes. These help evaluate the effectiveness of treatments and clinical practice, and also help to identify patients with unexpected outcomes. However, they have been shown by several studies to offer sub-optimal performance. Alternatively, Deep Learning offers state of the art capabilities in certain prediction tasks and research suggests deep neural networks are able to outperform traditional techniques. Nevertheless, a main impediment for the adoption of Deep Learning in healthcare is its reduced interpretability, for in this field it is crucial to gain insight into the why of predictions, to assure that models are actually learning relevant features instead of spurious correlations. To address this, we propose a deep multi-scale convolutional architecture trained on the Medical Information Mart for Intensive Care III (MIMIC-III) for mortality prediction, and the use of concepts from coalitional game theory to construct visual explanations aimed to show how important these inputs are deemed by the network. Results show our model attains a ROC AUC of 0.8735 (± 0.0025) which is competitive with the state of the art of Deep Learning mortality models trained on MIMIC-III data, while remaining interpretable. Supporting code can be found at https://github.com/williamcaicedo/ISeeU. © 2019 Elsevier Inc. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:44Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:44Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Journal of Biomedical Informatics; Vol. 98 |
dc.identifier.issn.none.fl_str_mv |
15320464 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8995 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.jbi.2019.103269 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
55782426500 57211703831 |
identifier_str_mv |
Journal of Biomedical Informatics; Vol. 98 15320464 10.1016/j.jbi.2019.103269 Universidad Tecnológica de Bolívar Repositorio UTB 55782426500 57211703831 |
url |
https://hdl.handle.net/20.500.12585/8995 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc. |
publisher.none.fl_str_mv |
Academic Press Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85070867164&doi=10.1016%2fj.jbi.2019.103269&partnerID=40&md5=b824faf402f646458dd0679ca76fb069 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8995/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021654303473664 |
spelling |
2020-03-26T16:32:44Z2020-03-26T16:32:44Z2019Journal of Biomedical Informatics; Vol. 9815320464https://hdl.handle.net/20.500.12585/899510.1016/j.jbi.2019.103269Universidad Tecnológica de BolívarRepositorio UTB5578242650057211703831To improve the performance of Intensive Care Units (ICUs), the field of bio-statistics has developed scores which try to predict the likelihood of negative outcomes. These help evaluate the effectiveness of treatments and clinical practice, and also help to identify patients with unexpected outcomes. However, they have been shown by several studies to offer sub-optimal performance. Alternatively, Deep Learning offers state of the art capabilities in certain prediction tasks and research suggests deep neural networks are able to outperform traditional techniques. Nevertheless, a main impediment for the adoption of Deep Learning in healthcare is its reduced interpretability, for in this field it is crucial to gain insight into the why of predictions, to assure that models are actually learning relevant features instead of spurious correlations. To address this, we propose a deep multi-scale convolutional architecture trained on the Medical Information Mart for Intensive Care III (MIMIC-III) for mortality prediction, and the use of concepts from coalitional game theory to construct visual explanations aimed to show how important these inputs are deemed by the network. Results show our model attains a ROC AUC of 0.8735 (± 0.0025) which is competitive with the state of the art of Deep Learning mortality models trained on MIMIC-III data, while remaining interpretable. Supporting code can be found at https://github.com/williamcaicedo/ISeeU. © 2019 Elsevier Inc.Recurso electrónicoapplication/pdfengAcademic Press Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85070867164&doi=10.1016%2fj.jbi.2019.103269&partnerID=40&md5=b824faf402f646458dd0679ca76fb069ISeeU: Visually interpretable deep learning for mortality prediction inside the ICUinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Deep learningICUMIMIC-IIIShapley valuesDeep learningForecastingGame theoryIntensive care unitsClinical practicesCoalitional game theoryMedical informationMIMIC-IIIRelevant featuresShapley valueSub-optimal performanceTraditional techniquesDeep neural networksAdoptionArticleDeep learningGameHumanIntensive care unitMedical informationMortalityPredictionDeep neural networkCaicedo-Torres W.Gutierrez J.Johnson, A.E.W., Ghassemi, M.M., Nemati, S., Niehaus, K.E., Clifton, D., Clifford, G.D., Machine learning and decision support in critical care (2016) Proc. IEEE, 104 (2), pp. 444-466Rapsang, A.G., Shyam, D.C., Scoring systems in the intensive care unit: a compendium (2014) Indian J. Crit. Care Med.: Peer-Review., Off. Publicat. Indian Soc. Crit. Care Med., 18 (4), pp. 220-228. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4033855/Huang, Y.C., Chang, K.Y., Lin, S.P., Chen, K., Chan, K.H., Chang, P., Development of a daily mortality probability prediction model from Intensive Care Unit patients using a discrete-time event history analysis (2013) Comput. Methods Progr. Biomed., 111 (2), pp. 280-289. , http://www.sciencedirect.com/science/article/pii/S0169260713001107Paul, E., Bailey, M., Pilcher, D., Risk prediction of hospital mortality for adult patients admitted to Australian and New Zealand intensive care units: development and validation of the Australian and New Zealand Risk of Death model (2013) J. Crit. Care, 28 (6), pp. 935-941. , http://www.sciencedirect.com/science/article/pii/S0883944113002566Che, Z., Purushotham, S., Khemani, R., Liu, Y., Interpretable deep models for ICU outcome prediction (2016) AMIA Annu. Symp. Proc., 2016, pp. 371-380. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333206/Lipton, Z.C., (2016), http://arxiv.org/abs/1606.03490, The Mythos of Model Interpretability, ICML Workshop on Human Interpretability in Machine Learning abs/1606.0 96–100. arXiv:arXiv:1606.03490v1He, K., Zhang, X., Ren, S., Sun, J., Deep residual learning for image (2016) Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Rabinovich, A., Going deeper with convolutions (2015), pp. 1-9. , 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)Urban, G., Geras, K.J., Kahou, S.E., Aslan, O., Wang, S., Caruana, R., (2017), A.-r. Mohamed, M. Philipose, M. Richardson, Do Deep Convolutional Nets Really Need to be Deep (Or Even Convolutional)?, in: ICLRCooper, G.F., Aliferis, C.F., Ambrosino, R., Aronis, J., Buchanan, B.G., Caruana, R., Fine, M.J., Spirtes, P., An evaluation of machine-learning methods for predicting pneumonia mortality, Artif. Intell. MedShapley, L.S., A Value for n-Person Games (1953) Contributions to the Theory of Games II, pp. 307-317. , H.W. Kuhn A.W. Tucker Princeton University Press PrincetonChe, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y., Recurrent Neural Networks for Multivariate Time Series with Missing Values, CoRR abs/1606.0Grnarova, P., Schmidt, F., Hyland, S.L., Eickhoff, C., Neural Document Embeddings for Intensive Care Patient Mortality Prediction, CoRR abs/1612.0Purushotham, S., Meng, C., Che, Z., Liu, Y., http://www.sciencedirect.com/science/article/pii/S1532046418300716, Benchmarking deep learning models on large healthcare datasets, J. Biomed. Inform. https://doi.org/10.1016/j.jbi.2018.04.007Ba, L.J., Caruana, R., Do Deep Nets Really Need to Be Deep? (2014) Proceedings of the 27th International Conference on Neural Information Processing Systems, NIPS'14, pp. 2654-2662. , http://dl.acm.org/citation.cfm?id=2969033.2969123, MIT Press Cambridge, MA, USASuresh, H., Hunt, N., Johnson, A., Celi, L.A., Szolovits, P., Ghassemi, M., Clinical Intervention Prediction and Understanding using Deep Networks, arXiv preprint arXiv:1705.08498Shen, D., Wu, G., Suk, H.-I., Deep learning in medical image analysis (2017) Annu. Rev. Biomed. Eng., 19 (1), p. nullLasko, T.A., Denny, J.C., Levy, M.A., Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data (2013) PLoS ONE, 8 (6), p. e66341. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691199/Che, Z., Kale, D., Li, W., Bahadori, M.T., Liu, Y., Deep Computational Phenotyping (2015), pp. 507-516. , http://doi.acm.org/10.1145/2783258.2783365, https://doi.org/10.1145/2783258.2783365. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’15, ACM, New York, NY, USASilva, I., Moody, G., Scott, D.J., Celi, L.A., Mark, R.G., Predicting In-Hospital Mortality of ICU Patients: the PhysioNet/Computing in Cardiology Challenge 2012 (2012) Comput. Cardiol., 39, pp. 245-248. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965265/Kale, D.C., Che, Z., Bahadori, M.T., Li, W., Liu, Y., Wetzel, R., Causal phenotype discovery via deep networks (2015) AMIA Annu. Symp. Proc., 2015, pp. 677-686. , http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4765623/Lipton, Z.C., Kale, D.C., Elkan, C., Wetzell, R., Learning to Diagnose with LSTM Recurrent Neural Networks (2015) International Conference on Learning Representations (ICLR 2016)Hochreiter, S., Schmidhuber, J., Long short-term memory (1997) Neural Comput., 9 (8), pp. 1735-1780Lipton, Z.C., Kale, D., Wetzel, R., Doshi-Velez, F., Fackler, J., Kale, D., Wallace, B., Directly Modeling Missing Data in Sequences with RNNs: Improved Classification of Clinical Time Series (2016), 56, pp. 253-270. , http://proceedings.mlr.press/v56/Lipton16.html, of Proceedings of Machine Learning Research, PMLR, Northeastern University, Boston, MA, USA J. Weins (Eds.), Proceedings of the 1st Machine Learning for Healthcare ConferenceRazavian, N., Sontag, D., (2015), Temporal convolutional neural networks for diagnosis lab tests, 25 November abs/1511.0 1–17. arXiv:1151.07938v1Johnson, A.E.W., Pollard, T.J., Shen, L., Lehman, L.-W.H., Feng, M., Ghassemi, M., Moody, B., Mark, R.G., MIMIC-III, a freely accessible critical care database (2016) Sci. Data, 3, p. 160035Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors (1986) Nature, 323 (6088), pp. 533-536Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J., GRAM: Graph-based Attention Model for Healthcare Representation Learning, CoRR abs/1611.0Aczon, M., Ledbetter, D., Ho, L., Gunny, A., Flynn, A., Williams, J., Wetzel, R., Dynamic mortality risk predictions in pediatric critical care using recurrent (2017) Neural Networks, , arXiv:1701.06675Beaulieu-Jones, B.K., Orzechowski, P., Moore, J.H., Mapping patient trajectories using longitudinal extraction and deep learning in the MIMIC-III critical care database (2018) Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp. 123-132. , 23Gall, J.R., Lemeshow, S., Saulnier, F., A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study, JAMA: J. Am. Med. Assoc. arXiv:0402594v3Calvert, J., Mao, Q., Hoffman, J.L., Jay, M., Desautels, T., Mohamadlou, H., Chettipally, U., Das, R., Using electronic health record collected clinical variables to predict medical intensive care unit mortality, Annals Med. SurgLeCun, Y., Bottou, L., Bengio, Y., Haffner, Gradient-Based Learning Applied to Document Recognition (1998), 86, pp. 2278-2324. , Proceedings of the IEEERumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors, NaturearXiv:arXiv:1011.1669v3Goodfellow, I., Bengio, Y., Courville, A., Deep Learning (2016), MIT PressShapiro, L., Computer Vision (2001), Prentice Hall Upper Saddle River, NJSrivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., Dropout: a simple way to prevent neural networks from overfitting (2014) J. Mach. Learn. Res., 15 (1), pp. 1929-1958. , http://dl.acm.org/citation.cfm?id=2627435.2670313Ioffe, S., Szegedy, C., (2015), Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Arxiv abs/1502.0 1–11. arXiv:1502.03167Strumbelj, E., Kononenko, I., Wrobel, S., An efficient explanation of individual classifications using game theory, J. Mach. Learn. Res. arXiv:1606.05386Zeiler, M.D., Fergus, R., Visualizing and Understanding Convolutional Networks (2014), pp. 818-833. , Springer International Publishing ChamShrikumar, A., Greenside, P., Kundaje, A., Learning Important Features Through Propagating Activation Differences, CoRR abs/1704.0. arXiv:1704.02685Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W., On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation, PLoS ONEarXiv:1606.04155Simonyan, K., Vedaldi, A., Zisserman, A., Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, CoRR abs/1312.6Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A., Striving for Simplicity: The All Convolutional Net, CoRR abs/1412.6. arXiv:1412.6806Kindermans, P.-J., Schütt, K., Müller, K.-R., Dähne, S., Investigating the influence of noise and distractors on the interpretation of neural networks, ArXiv e-prints arXiv:1611.07270Lundberg, S.M., Lee, S.-I., Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., A Unified Approach to Interpreting Model Predictions (2017), pp. 4765-4774. , http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf, R. Garnett (Eds.), Advances in Neural Information Processing Systems 30, Curran Associates IncChollet, F., Keras 2015Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Zheng, X., (2015), http://download.tensorflow.org/paper/whitepaper2015.pdf, TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, None 1 (212) 19. arXiv:1603.04467, https://doi.org/10.1038/nn.3331Johnson, A.E., Stone, D.J., Celi, L.A., Pollard, T.J., The, M.I.M.I., C Code Repository: Enabling reproducibility in critical care research, J. Am. Med. Inform. Assochttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8995/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8995oai:repositorio.utb.edu.co:20.500.12585/89952021-02-02 15:10:18.927Repositorio Institucional UTBrepositorioutb@utb.edu.co |