ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU
To improve the performance of Intensive Care Units (ICUs), the field of bio-statistics has developed scores which try to predict the likelihood of negative outcomes. These help evaluate the effectiveness of treatments and clinical practice, and also help to identify patients with unexpected outcomes...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8995
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8995
- Palabra clave:
- Deep learning
ICU
MIMIC-III
Shapley values
Deep learning
Forecasting
Game theory
Intensive care units
Clinical practices
Coalitional game theory
Medical information
MIMIC-III
Relevant features
Shapley value
Sub-optimal performance
Traditional techniques
Deep neural networks
Adoption
Article
Deep learning
Game
Human
Intensive care unit
Medical information
Mortality
Prediction
Deep neural network
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/