ISeeU: Visually interpretable deep learning for mortality prediction inside the ICU

To improve the performance of Intensive Care Units (ICUs), the field of bio-statistics has developed scores which try to predict the likelihood of negative outcomes. These help evaluate the effectiveness of treatments and clinical practice, and also help to identify patients with unexpected outcomes...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8995
Acceso en línea:
https://hdl.handle.net/20.500.12585/8995
Palabra clave:
Deep learning
ICU
MIMIC-III
Shapley values
Deep learning
Forecasting
Game theory
Intensive care units
Clinical practices
Coalitional game theory
Medical information
MIMIC-III
Relevant features
Shapley value
Sub-optimal performance
Traditional techniques
Deep neural networks
Adoption
Article
Deep learning
Game
Human
Intensive care unit
Medical information
Mortality
Prediction
Deep neural network
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
Description
Summary:To improve the performance of Intensive Care Units (ICUs), the field of bio-statistics has developed scores which try to predict the likelihood of negative outcomes. These help evaluate the effectiveness of treatments and clinical practice, and also help to identify patients with unexpected outcomes. However, they have been shown by several studies to offer sub-optimal performance. Alternatively, Deep Learning offers state of the art capabilities in certain prediction tasks and research suggests deep neural networks are able to outperform traditional techniques. Nevertheless, a main impediment for the adoption of Deep Learning in healthcare is its reduced interpretability, for in this field it is crucial to gain insight into the why of predictions, to assure that models are actually learning relevant features instead of spurious correlations. To address this, we propose a deep multi-scale convolutional architecture trained on the Medical Information Mart for Intensive Care III (MIMIC-III) for mortality prediction, and the use of concepts from coalitional game theory to construct visual explanations aimed to show how important these inputs are deemed by the network. Results show our model attains a ROC AUC of 0.8735 (± 0.0025) which is competitive with the state of the art of Deep Learning mortality models trained on MIMIC-III data, while remaining interpretable. Supporting code can be found at https://github.com/williamcaicedo/ISeeU. © 2019 Elsevier Inc.