Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach
This express brief deals with the problem of the state variables regulation in the ball and beam system by applying the discrete-inverse optimal control approach. The ball and beam system model is defined by a set of four-order nonlinear differential equations that are discretized using the forward...
- Autores:
-
Montoya, Oscar Danilo
Gil-González, Walter
Ramírez-Vanegas, Carlos
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9543
- Palabra clave:
- Discrete-inverse optimal control
Ball and beam dynamical system
Asymptotic stability
Passivity-based analysis
Hamiltonian and Lagrangian functions
State variables regulation
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_5768d6a38c80e5099798c5f8c60d2e56 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9543 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach |
title |
Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach |
spellingShingle |
Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach Discrete-inverse optimal control Ball and beam dynamical system Asymptotic stability Passivity-based analysis Hamiltonian and Lagrangian functions State variables regulation |
title_short |
Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach |
title_full |
Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach |
title_fullStr |
Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach |
title_full_unstemmed |
Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach |
title_sort |
Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Gil-González, Walter Ramírez-Vanegas, Carlos |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Gil-González, Walter Ramírez-Vanegas, Carlos |
dc.subject.keywords.spa.fl_str_mv |
Discrete-inverse optimal control Ball and beam dynamical system Asymptotic stability Passivity-based analysis Hamiltonian and Lagrangian functions State variables regulation |
topic |
Discrete-inverse optimal control Ball and beam dynamical system Asymptotic stability Passivity-based analysis Hamiltonian and Lagrangian functions State variables regulation |
description |
This express brief deals with the problem of the state variables regulation in the ball and beam system by applying the discrete-inverse optimal control approach. The ball and beam system model is defined by a set of four-order nonlinear differential equations that are discretized using the forward difference method. The main advantages of using the discrete-inverse optimal control to regulate state variables in dynamic systems are (i) the control input is an optimal signal as it guarantees the minimum of the Hamiltonian function, (ii) the control signal makes the dynamical system passive, and (iii) the control input ensures asymptotic stability in the sense of Lyapunov. Numerical simulations in the MATLAB environment allow demonstrating the effectiveness and robustness of the studied control design for state variables regulation with a wide gamma of dynamic behaviors as a function of the assigned control gains. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-11-04T21:33:20Z |
dc.date.available.none.fl_str_mv |
2020-11-04T21:33:20Z |
dc.date.issued.none.fl_str_mv |
2020-08-14 |
dc.date.submitted.none.fl_str_mv |
2020-11-03 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Danilo Montoya, O.; Gil-González, W.; Ramírez-Vanegas, C. Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach. Symmetry 2020, 12, 1359. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9543 |
dc.identifier.url.none.fl_str_mv |
https://www.mdpi.com/2073-8994/12/8/1359 |
dc.identifier.doi.none.fl_str_mv |
10.3390/sym12081359 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Danilo Montoya, O.; Gil-González, W.; Ramírez-Vanegas, C. Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach. Symmetry 2020, 12, 1359. 10.3390/sym12081359 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9543 https://www.mdpi.com/2073-8994/12/8/1359 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Symmetry 2020, 12, 1359; doi:10.3390/sym12081359 Vol 12 no 8 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9543/1/89.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9543/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9543/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9543/4/89.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9543/5/89.pdf.jpg |
bitstream.checksum.fl_str_mv |
cf59ef132f83ac03d1ff08dc7ee4ec6f 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 4951c065b22872a8a783e93c625a6d91 4bc74b9c049a8d7141c53b3b35da4de4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021685100150784 |
spelling |
Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walterce1f5078-74c6-4b5c-b56a-784f85e52a08Ramírez-Vanegas, Carlos5cbe6c61-0f15-42e9-8b2f-09e810652f702020-11-04T21:33:20Z2020-11-04T21:33:20Z2020-08-142020-11-03Danilo Montoya, O.; Gil-González, W.; Ramírez-Vanegas, C. Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approach. Symmetry 2020, 12, 1359.https://hdl.handle.net/20.500.12585/9543https://www.mdpi.com/2073-8994/12/8/135910.3390/sym12081359Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis express brief deals with the problem of the state variables regulation in the ball and beam system by applying the discrete-inverse optimal control approach. The ball and beam system model is defined by a set of four-order nonlinear differential equations that are discretized using the forward difference method. The main advantages of using the discrete-inverse optimal control to regulate state variables in dynamic systems are (i) the control input is an optimal signal as it guarantees the minimum of the Hamiltonian function, (ii) the control signal makes the dynamical system passive, and (iii) the control input ensures asymptotic stability in the sense of Lyapunov. Numerical simulations in the MATLAB environment allow demonstrating the effectiveness and robustness of the studied control design for state variables regulation with a wide gamma of dynamic behaviors as a function of the assigned control gains.12 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Symmetry 2020, 12, 1359; doi:10.3390/sym12081359 Vol 12 no 8Discrete-Inverse Optimal Control Applied to the Ball and Beam Dynamical System: A Passivity-Based Control Approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Discrete-inverse optimal controlBall and beam dynamical systemAsymptotic stabilityPassivity-based analysisHamiltonian and Lagrangian functionsState variables regulationCartagena de IndiasPúblico generalKagami, R.M.; da Costa, G.K.; Uhlmann, T.S.; Mendes, L.A.; Freire, R.Z. A Generic WebLab Control Tuning Experience Using the Ball and Beam Process and Multiobjective Optimization Approach. Information 2020, 11, 132.10.3390/info11030132.Koo, M.S.; Choi, H.L.; Lim, J.T. Adaptive nonlinear control of a ball and beam system using the centrifugal force term. Int. J. Innov. Comput. Inf. Control 2012, 8, 5999–6009Ye, H.; Gui, W.; Yang, C. Novel Stabilization Designs for the Ball-and-Beam System. IFAC Proc. Vol. 2011, 44, 8468–8472. doi:10.3182/20110828-6-it-1002.01725.Rahmat, M.F.; Wahid, H.; Wahab, N.A. Application of intelligent controller in a ball and beam control system. Int. J. Smart Sens. Intell. Syst. 2010, 3, 45–60. doi:10.21307/ijssis-2017-378.Meenakshipriya, B.; Kalpana, K. Modelling and Control of Ball and Beam System using Coefficient Diagram Method (CDM) based PID controller. IFAC Proc. Vol. 2014, 47, 620–626. doi:10.3182/20140313-3-in-3024.00079.Ding, M.; Liu, B.; Wang, L. Position control for ball and beam system based on active disturbance rejection control. Syst. Sci. Control. Eng. 2019, 7, 97–108. doi:10.1080/21642583.2019.1575297.Qi, X.; Li, J.; Xia, Y.; Wan, H. On stability for sampled-data nonlinear ADRC-based control system with application to the ball-beam problem. J. Franklin Inst. 2018, 355, 8537–8553. doi:10.1016/j.jfranklin.2018.09.002Chen, C.C.; Chien, T.L.; Wei, C.L. Application of Feedback Linearization to Tracking and Almost Disturbance Decoupling Control of the AMIRA Ball and Beam System. J. Optim. Theory Appl. 2004, 121, 279–300. doi:10.1023/b:jota.0000037406.99891.b9.Aguilar-Ibañez, C.; Suarez-Castanon, M.S.; de Jesús Rubio, J. Stabilization of the Ball on the Beam System by Means of the Inverse Lyapunov Approach. Math. Probl. Eng. 2012, 2012, 1–13. doi:10.1155/2012/810597.Li, E.; Liang, Z.Z.; Hou, Z.G.; Tan, M. Energy-based balance control approach to the ball and beam system. Int. J. Control 2009, 82, 981–992. doi:10.1080/00207170802061269Kelly, R.; Sandoval, J.; Santibáñez, V. A Novel Estimate of The Domain of Attraction of an IDA-PBC of a Ball and Beam System. IFAC Proc. Vol. 2011, 44, 8463–8467. doi:10.3182/20110828-6-it-1002.00717.Chang, Y.H.; Chang, C.W.; Tao, C.W.; Lin, H.W.; Taur, J.S. Fuzzy sliding-mode control for ball and beam system with fuzzy ant colony optimization. Expert Syst. Appl. 2012, 39, 3624–3633. doi:10.1016/j.eswa.2011.09.052.Castillo, O.; Lizárraga, E.; Soria, J.; Melin, P.; Valdez, F. New approach using ant colony optimization with ant set partition for fuzzy control design applied to the ball and beam system. Inf. Sci. 2015, 294, 203–215. doi:10.1016/j.ins.2014.09.040.Zavala, S.J.; Yu, W.; Li, X. Synchronization of two ball and beam systems with neural compensation. IFAC Proc. Vol. 2008, 41, 12781–12786. doi:10.3182/20080706-5-kr-1001.02162Ornelas, F.; Loukianov, A.G.; Sanchez, E.N. Discrete-time Robust Inverse Optimal Control for a Class of Nonlinear Systems. IFAC Proc. Vol. 2011, 44, 8595–8600. doi:10.3182/20110828-6-it-1002.03386Atkinson, C.; Osseiran, A. Discrete-space time-fractional processes. Fract. Calc. Appl. Anal. 2011, 14. doi:10.2478/s13540-011-0013-9.Carrasco-Gutierrez, C.E.; Sosa, W. A discrete dynamical system and its applications. Pesqui. Oper. 2019, 39, 457–469. doi:10.1590/0101-7438.2019.039.03.0457Sanchez, E.N.; Ornelas-Tellez, F. Discrete-Time Inverse Optimal Control for Nonlinear Systems; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2017.Galor, O. Discrete Dynamical Systems; Springer: Berlin/Heidelberg, Germany, 2007. doi:10.1007/3-540-36776-4Gil-González, W.; Serra, F.M.; Montoya, O.D.; Ramírez, C.A.; Orozco-Henao, C. Direct Power Compensation in AC Distribution Networks with SCES Systems via PI-PBC Approach. Symmetry 2020, 12, 666. doi:10.3390/sym12040666la Sen, M.D. On the Passivity and Positivity Properties in Dynamic Systems: Their Achievement under Control Laws and Their Maintenance under Parameterizations Switching. J. Math. 2018, 2018, 1–16. doi:10.1155/2018/5298756.Navarro-López, E.; Fossas-Colet, E. Dissipativity, passivity, and feedback passivity in the nonlinear discrete-time setting. IFAC Proc. Vol. 2002, 35, 257–262. doi:10.3182/20020721-6-es-1901.01114.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL89.pdf89.pdfArtículo principalapplication/pdf418037https://repositorio.utb.edu.co/bitstream/20.500.12585/9543/1/89.pdfcf59ef132f83ac03d1ff08dc7ee4ec6fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9543/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9543/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT89.pdf.txt89.pdf.txtExtracted texttext/plain31606https://repositorio.utb.edu.co/bitstream/20.500.12585/9543/4/89.pdf.txt4951c065b22872a8a783e93c625a6d91MD54THUMBNAIL89.pdf.jpg89.pdf.jpgGenerated Thumbnailimage/jpeg87288https://repositorio.utb.edu.co/bitstream/20.500.12585/9543/5/89.pdf.jpg4bc74b9c049a8d7141c53b3b35da4de4MD5520.500.12585/9543oai:repositorio.utb.edu.co:20.500.12585/95432020-11-25 13:02:17.008Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |