Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
Dengue and Chikungunya fever are two viral diseases of great public health concern in Colombia and other tropical countries as they are both transmitted by Aedes mosquitoes, which are endemic to this area. In recent years, there have been unprecedented outbreaks of these infections. Therefore, the d...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8960
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8960
- Palabra clave:
- Chikungunya
Dengue
Forecasting
Gaussian processes
Kernel ridge regression
Machine learning
Artificial intelligence
Diseases
Forecasting
Gaussian distribution
Gaussian noise (electronic)
Health
Learning systems
Public health
Regression analysis
Chikungunya
Dengue
Gaussian processes
Kernel ridge regressions
Machine learning models
Mean absolute percentage error
Research and development
Time series forecasting
Learning algorithms
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_54d068b9b815f42e509b8647eb5b9f6d |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8960 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia |
title |
Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia |
spellingShingle |
Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia Chikungunya Dengue Forecasting Gaussian processes Kernel ridge regression Machine learning Artificial intelligence Diseases Forecasting Gaussian distribution Gaussian noise (electronic) Health Learning systems Public health Regression analysis Chikungunya Dengue Gaussian processes Kernel ridge regressions Machine learning models Mean absolute percentage error Research and development Time series forecasting Learning algorithms |
title_short |
Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia |
title_full |
Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia |
title_fullStr |
Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia |
title_full_unstemmed |
Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia |
title_sort |
Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia |
dc.contributor.editor.none.fl_str_mv |
Solano A. Ordonez H. |
dc.subject.keywords.none.fl_str_mv |
Chikungunya Dengue Forecasting Gaussian processes Kernel ridge regression Machine learning Artificial intelligence Diseases Forecasting Gaussian distribution Gaussian noise (electronic) Health Learning systems Public health Regression analysis Chikungunya Dengue Gaussian processes Kernel ridge regressions Machine learning models Mean absolute percentage error Research and development Time series forecasting Learning algorithms |
topic |
Chikungunya Dengue Forecasting Gaussian processes Kernel ridge regression Machine learning Artificial intelligence Diseases Forecasting Gaussian distribution Gaussian noise (electronic) Health Learning systems Public health Regression analysis Chikungunya Dengue Gaussian processes Kernel ridge regressions Machine learning models Mean absolute percentage error Research and development Time series forecasting Learning algorithms |
description |
Dengue and Chikungunya fever are two viral diseases of great public health concern in Colombia and other tropical countries as they are both transmitted by Aedes mosquitoes, which are endemic to this area. In recent years, there have been unprecedented outbreaks of these infections. Therefore, the development of computational models to forecast the number of cases based on available epidemiological data would benefit public surveillance health systems to take effective actions regarding the prevention and mitigation of these events. In this work, we present the application of machine learning algorithms to predict the morbidity dynamics of dengue and chikungunya in Colombia using time-series-forecasting methods. Available weekly incidence for dengue (2007–2016) and chikungunya (2014–2016) from the National Health Institute of Colombia was gathered and employed as input to generate and validate the models. Kernel Ridge Regression and Gaussian Processes were used at forecasting the number of cases of both diseases considering horizons of one and four weeks. In order to assess the performance of the algorithms, rolling-origin cross-validation was carried out, and the mean absolute percentage errors (MAPE), mean absolute errors (MAE), R2 and the percentages of explained variance calculated for each model. Kernel Ridge regression with one-step ahead horizon was found to be superior to other models in forecasting both dengue and chikungunya number of cases per week. However, the power of prediction for dengue incidence was higher as there is more epidemiological data available for this disease compared to chikungunya. The results are promising and urge further research and development to achieve a tool which could be used by public health officials to manage more adequately the epidemiological dynamics of these diseases. © Springer International Publishing AG 2017. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:40Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:40Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Communications in Computer and Information Science; Vol. 735, pp. 472-484 |
dc.identifier.isbn.none.fl_str_mv |
9783319665610 |
dc.identifier.issn.none.fl_str_mv |
18650929 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8960 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-319-66562-7_34 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
55782426500 55670024000 57193857478 57193855099 57195570557 |
identifier_str_mv |
Communications in Computer and Information Science; Vol. 735, pp. 472-484 9783319665610 18650929 10.1007/978-3-319-66562-7_34 Universidad Tecnológica de Bolívar Repositorio UTB 55782426500 55670024000 57193857478 57193855099 57195570557 |
url |
https://hdl.handle.net/20.500.12585/8960 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
19 September 2017 through 22 September 2017 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028893106&doi=10.1007%2f978-3-319-66562-7_34&partnerID=40&md5=ed64300e6ef9b86cdd1591835b97554b |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
12th Colombian Conference on Computing, CCC 2017 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8960/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021697140948992 |
spelling |
Solano A.Ordonez H.Caicedo-Torres W.Montes-Grajales D.Miranda-Castro W.Fennix Agudelo, Mary AndreaAgudelo-Herrera N.2020-03-26T16:32:40Z2020-03-26T16:32:40Z2017Communications in Computer and Information Science; Vol. 735, pp. 472-484978331966561018650929https://hdl.handle.net/20.500.12585/896010.1007/978-3-319-66562-7_34Universidad Tecnológica de BolívarRepositorio UTB5578242650055670024000571938574785719385509957195570557Dengue and Chikungunya fever are two viral diseases of great public health concern in Colombia and other tropical countries as they are both transmitted by Aedes mosquitoes, which are endemic to this area. In recent years, there have been unprecedented outbreaks of these infections. Therefore, the development of computational models to forecast the number of cases based on available epidemiological data would benefit public surveillance health systems to take effective actions regarding the prevention and mitigation of these events. In this work, we present the application of machine learning algorithms to predict the morbidity dynamics of dengue and chikungunya in Colombia using time-series-forecasting methods. Available weekly incidence for dengue (2007–2016) and chikungunya (2014–2016) from the National Health Institute of Colombia was gathered and employed as input to generate and validate the models. Kernel Ridge Regression and Gaussian Processes were used at forecasting the number of cases of both diseases considering horizons of one and four weeks. In order to assess the performance of the algorithms, rolling-origin cross-validation was carried out, and the mean absolute percentage errors (MAPE), mean absolute errors (MAE), R2 and the percentages of explained variance calculated for each model. Kernel Ridge regression with one-step ahead horizon was found to be superior to other models in forecasting both dengue and chikungunya number of cases per week. However, the power of prediction for dengue incidence was higher as there is more epidemiological data available for this disease compared to chikungunya. The results are promising and urge further research and development to achieve a tool which could be used by public health officials to manage more adequately the epidemiological dynamics of these diseases. © Springer International Publishing AG 2017.Universidad Autónoma de Bucaramanga: TRFCI-1P2016, UNAM 2016Acknowledgments. The authors wish to thank the Universidad Tecnológica de Bolívar (Colombia) and Universidad Autónoma de México for their financial support (Grant: TRFCI-1P2016, D. M-G: Programa de Becas Posdoctorales en la UNAM 2016).Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85028893106&doi=10.1007%2f978-3-319-66562-7_34&partnerID=40&md5=ed64300e6ef9b86cdd1591835b97554b12th Colombian Conference on Computing, CCC 2017Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombiainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fChikungunyaDengueForecastingGaussian processesKernel ridge regressionMachine learningArtificial intelligenceDiseasesForecastingGaussian distributionGaussian noise (electronic)HealthLearning systemsPublic healthRegression analysisChikungunyaDengueGaussian processesKernel ridge regressionsMachine learning modelsMean absolute percentage errorResearch and developmentTime series forecastingLearning algorithms19 September 2017 through 22 September 2017(2017), https://github.com/williamcaicedo/morbidityPrediction, Accessed 25 Mar 2017Althouse, B.M., Ng, Y.Y., Cummings, D.A.T., Prediction of dengue incidence using search query surveillance (2011) Plos Negl. Trop. Dis, 5 (8), pp. 1-7. , http://dx.doi.org/10.1371Caicedo-Torres, W., Payares, F., A machine learning model for occupancy rates and demand forecasting in the hospitality industry (2016) IBERAMIA 2016. LNCS, 10022. , Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.), Springer, ChamCawley, G.C., Talbot, N.L.C., Reduced rank kernel ridge regression (2002) Neural Process. Lett, 16 (3), pp. 293-302. , http://dx.doi.org/10.1023/AChu, W., Ghahramani, Z., Gaussian processes for ordinal regression (2005) J. Mach. Learn. Res, 6, pp. 1019-1041Cortes, C., Vapnik, V., Support-vector networks (1995) Mach. Learn., 20 (3), pp. 273-297. , http://dx.doi.org/10.1007/BF00994018Cruz, J.A., Wishart, D.S., Applications of machine learning in cancer prediction and prognosis (2006) Cancer Inform, 2, pp. 59-77. , https://era.library.ualberta.ca/files/1v53jx76c/CancerInformatics2200759.pdfEastin, M.D., Delmelle, E., Casas, I., Wexler, J., Self, C., Intra-and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in colombia (2014) Am. J. Trop. Med. Hyg., 91 (3), pp. 598-610Escobar, L.E., Qiao, H., Peterson, A.T., Forecasting chikungunya spread in the Americas via data-driven empirical approaches (2016) Parasites Vectors, 9 (1), p. 112. , http://dx.doi.org/10.1186/s13071-016-1403-yFlasche, S., Jit, M., Rodríguez-Barraquer, I., Coudeville, L., Recker, M., Koelle, K., Milne, G., Cummings, D.A., The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): A model comparison study (2016) Plos Med, 13 (11)Gilliland, M., Sglavo, U., Tashman, L., (2016) Business Forecasting: Practical Problems and Solutions, , http://dx.doi.org/10.1002/9781119244592, Wiley, HobokenGolding, N., Wilson, A.L., Moyes, C.L., Cano, J., Pigott, D.M., Velayud-Han, R., Brooker, S.J., Lindsay, S.W., Integrating vector control across diseases (2015) BMC Med, 13 (1), p. 249. , http://dx.doi.org/10.1186/s12916-015-0491-4Hesterberg, T., Choi, N.H., Meier, L., Fraley, C., Least angle and 1 penalized regression: A review (2008) Stat. Surv., 2, pp. 61-93Hoerl, A.E., Kennard, R.W., Ridge regression: Biased estimation for nonorthogonal problems (2000) Technometrics, 42 (1), pp. 80-86. , http://amstat.tandfonline.com/doi/abs/10.1080/00401706.2000.10485983Kucharz, E.J., Cebula-Byrska, I., Chikungunya fever (2012) Eur. J. Intern. Med., 23 (4), pp. 325-329. , http://www.sciencedirect.com/science/article/pii/S0953620512000337Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shep-Perd, M., Webster, S., An investigation of machine learning based prediction systems (2000) J. Syst. Softw., 53 (1), pp. 23-29. , http://www.sciencedirect.com/science/article/pii/S0164121200000054Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Dubourg, V., Scikit-learn: Machine learning in python (2011) J. Mach. Learn. Res, 12, pp. 2825-2830Rasmussen, C.E., (2004) Gaussian Processes in Machine Learning, pp. 63-71. , http://dx.doi.org/10.1007/978-3-540-28650-94Rasmussen, C.E., Williams, C.K., Gaussian Processes for Machine Learning. The MIT Press (2006) Cambridge, 2 (3), p. 4Robert, C., Machine learning, a probabilistic perspective (2014) CHANCE, 27 (2), pp. 62-63. , http://dx.doi.org/10.1080/09332480.2014.914768Rodríguez, J., Correa, C., Predicción temporal de la epidemia de dengue en colombia: Dinámica probabilista de la epidemia (2009) Revista De Salud Pública, 11 (3), pp. 443-453. , http://www.scielo.org.co/scielo.php?script=sciarttext&pid=S0124-00642009000300013&nrm=isoSchölkopf, B., Smola, A.J., (2002) Learning with Kernels: Support Vector Machines, Reg-Ularization, Optimization, and Beyond, , MIT press, CambridgeSilawan, T., Singhasivanon, P., Kaewkungwal, J., Nimmanitya, S., Suwonkerd, W., Temporal patterns and forecast of dengue infection in Northeastern Thailand. SE Asian J. Trop. Med (2008) Public Health, 39 (1), p. 90Simmons, C.P., Farrar, J.J., Van Vinh Chau, N., Wills, B., Dengue (2012) N. Engl. J. Med., 366 (15), pp. 1423-1432. , http://dx.doi.org/10.1056/NEJMra1110265, 22494122Smalley, C., Erasmus, J.H., Chesson, C.B., Beasley, D.W., Status of research and development of vaccines for chikungunya (2016) Vaccine, 34 (26), pp. 2976-2981Solomon, T., Mallewa, M., Dengue and other emerging flaviviruses (2001) J. Infect., 42 (2), pp. 104-115. , http://www.sciencedirect.com/science/article/pii/S0163445301908023Sutton, R.S., Learning to predict by the methods of temporal differences (1988) Mach. Learn., 3 (1), pp. 9-44. , http://dx.doi.org/10.1007/BF00115009Vannice, K.S., Durbin, A., Hombach, J., Status of vaccine research and development of vaccines for dengue (2016) Vaccine, 34 (26), pp. 2934-2938Walker, T., Jeffries, C.L., Mansfield, K.L., Johnson, N., Mosquito cell lines: History, isolation, availability and application to assess the threat of arbovi-ral transmission in the united kingdom (2014) Parasites Vectors, 7 (1), p. 382. , http://dx.doi.org/10.1186/1756-3305-7-382Williams, C.K., Rasmussen, C.E., Gaussian processes for regression (1996) Advances in Neural Information Processing Systems, pp. 514-520(2009) Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition, , http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf?ua=1(2009) World Health Organization - Dengue and Severe Dengue, , http://www.who.int/mediacentre/factsheets/fs117/en/, Accessed 25 March 2017(2017) World Health Organization - Chikungunya (, , http://www.who.int/mediacentre/factsheets/fs327/en/, Accessed 25 March 2017Yusof, Y., Mustaffa, Z., Dengue outbreak prediction: A least squares support vector machines approach (2011) Int. J. Comput. Theory Eng., 3 (4), p. 489http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8960/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8960oai:repositorio.utb.edu.co:20.500.12585/89602023-05-26 09:29:32.512Repositorio Institucional UTBrepositorioutb@utb.edu.co |