Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia

Dengue and Chikungunya fever are two viral diseases of great public health concern in Colombia and other tropical countries as they are both transmitted by Aedes mosquitoes, which are endemic to this area. In recent years, there have been unprecedented outbreaks of these infections. Therefore, the d...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8960
Acceso en línea:
https://hdl.handle.net/20.500.12585/8960
Palabra clave:
Chikungunya
Dengue
Forecasting
Gaussian processes
Kernel ridge regression
Machine learning
Artificial intelligence
Diseases
Forecasting
Gaussian distribution
Gaussian noise (electronic)
Health
Learning systems
Public health
Regression analysis
Chikungunya
Dengue
Gaussian processes
Kernel ridge regressions
Machine learning models
Mean absolute percentage error
Research and development
Time series forecasting
Learning algorithms
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_54d068b9b815f42e509b8647eb5b9f6d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8960
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
title Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
spellingShingle Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
Chikungunya
Dengue
Forecasting
Gaussian processes
Kernel ridge regression
Machine learning
Artificial intelligence
Diseases
Forecasting
Gaussian distribution
Gaussian noise (electronic)
Health
Learning systems
Public health
Regression analysis
Chikungunya
Dengue
Gaussian processes
Kernel ridge regressions
Machine learning models
Mean absolute percentage error
Research and development
Time series forecasting
Learning algorithms
title_short Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
title_full Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
title_fullStr Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
title_full_unstemmed Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
title_sort Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
dc.contributor.editor.none.fl_str_mv Solano A.
Ordonez H.
dc.subject.keywords.none.fl_str_mv Chikungunya
Dengue
Forecasting
Gaussian processes
Kernel ridge regression
Machine learning
Artificial intelligence
Diseases
Forecasting
Gaussian distribution
Gaussian noise (electronic)
Health
Learning systems
Public health
Regression analysis
Chikungunya
Dengue
Gaussian processes
Kernel ridge regressions
Machine learning models
Mean absolute percentage error
Research and development
Time series forecasting
Learning algorithms
topic Chikungunya
Dengue
Forecasting
Gaussian processes
Kernel ridge regression
Machine learning
Artificial intelligence
Diseases
Forecasting
Gaussian distribution
Gaussian noise (electronic)
Health
Learning systems
Public health
Regression analysis
Chikungunya
Dengue
Gaussian processes
Kernel ridge regressions
Machine learning models
Mean absolute percentage error
Research and development
Time series forecasting
Learning algorithms
description Dengue and Chikungunya fever are two viral diseases of great public health concern in Colombia and other tropical countries as they are both transmitted by Aedes mosquitoes, which are endemic to this area. In recent years, there have been unprecedented outbreaks of these infections. Therefore, the development of computational models to forecast the number of cases based on available epidemiological data would benefit public surveillance health systems to take effective actions regarding the prevention and mitigation of these events. In this work, we present the application of machine learning algorithms to predict the morbidity dynamics of dengue and chikungunya in Colombia using time-series-forecasting methods. Available weekly incidence for dengue (2007–2016) and chikungunya (2014–2016) from the National Health Institute of Colombia was gathered and employed as input to generate and validate the models. Kernel Ridge Regression and Gaussian Processes were used at forecasting the number of cases of both diseases considering horizons of one and four weeks. In order to assess the performance of the algorithms, rolling-origin cross-validation was carried out, and the mean absolute percentage errors (MAPE), mean absolute errors (MAE), R2 and the percentages of explained variance calculated for each model. Kernel Ridge regression with one-step ahead horizon was found to be superior to other models in forecasting both dengue and chikungunya number of cases per week. However, the power of prediction for dengue incidence was higher as there is more epidemiological data available for this disease compared to chikungunya. The results are promising and urge further research and development to achieve a tool which could be used by public health officials to manage more adequately the epidemiological dynamics of these diseases. © Springer International Publishing AG 2017.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:40Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:40Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Communications in Computer and Information Science; Vol. 735, pp. 472-484
dc.identifier.isbn.none.fl_str_mv 9783319665610
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8960
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-66562-7_34
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 55782426500
55670024000
57193857478
57193855099
57195570557
identifier_str_mv Communications in Computer and Information Science; Vol. 735, pp. 472-484
9783319665610
18650929
10.1007/978-3-319-66562-7_34
Universidad Tecnológica de Bolívar
Repositorio UTB
55782426500
55670024000
57193857478
57193855099
57195570557
url https://hdl.handle.net/20.500.12585/8960
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 19 September 2017 through 22 September 2017
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85028893106&doi=10.1007%2f978-3-319-66562-7_34&partnerID=40&md5=ed64300e6ef9b86cdd1591835b97554b
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 12th Colombian Conference on Computing, CCC 2017
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8960/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021697140948992
spelling Solano A.Ordonez H.Caicedo-Torres W.Montes-Grajales D.Miranda-Castro W.Fennix Agudelo, Mary AndreaAgudelo-Herrera N.2020-03-26T16:32:40Z2020-03-26T16:32:40Z2017Communications in Computer and Information Science; Vol. 735, pp. 472-484978331966561018650929https://hdl.handle.net/20.500.12585/896010.1007/978-3-319-66562-7_34Universidad Tecnológica de BolívarRepositorio UTB5578242650055670024000571938574785719385509957195570557Dengue and Chikungunya fever are two viral diseases of great public health concern in Colombia and other tropical countries as they are both transmitted by Aedes mosquitoes, which are endemic to this area. In recent years, there have been unprecedented outbreaks of these infections. Therefore, the development of computational models to forecast the number of cases based on available epidemiological data would benefit public surveillance health systems to take effective actions regarding the prevention and mitigation of these events. In this work, we present the application of machine learning algorithms to predict the morbidity dynamics of dengue and chikungunya in Colombia using time-series-forecasting methods. Available weekly incidence for dengue (2007–2016) and chikungunya (2014–2016) from the National Health Institute of Colombia was gathered and employed as input to generate and validate the models. Kernel Ridge Regression and Gaussian Processes were used at forecasting the number of cases of both diseases considering horizons of one and four weeks. In order to assess the performance of the algorithms, rolling-origin cross-validation was carried out, and the mean absolute percentage errors (MAPE), mean absolute errors (MAE), R2 and the percentages of explained variance calculated for each model. Kernel Ridge regression with one-step ahead horizon was found to be superior to other models in forecasting both dengue and chikungunya number of cases per week. However, the power of prediction for dengue incidence was higher as there is more epidemiological data available for this disease compared to chikungunya. The results are promising and urge further research and development to achieve a tool which could be used by public health officials to manage more adequately the epidemiological dynamics of these diseases. © Springer International Publishing AG 2017.Universidad Autónoma de Bucaramanga: TRFCI-1P2016, UNAM 2016Acknowledgments. The authors wish to thank the Universidad Tecnológica de Bolívar (Colombia) and Universidad Autónoma de México for their financial support (Grant: TRFCI-1P2016, D. M-G: Programa de Becas Posdoctorales en la UNAM 2016).Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85028893106&doi=10.1007%2f978-3-319-66562-7_34&partnerID=40&md5=ed64300e6ef9b86cdd1591835b97554b12th Colombian Conference on Computing, CCC 2017Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombiainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fChikungunyaDengueForecastingGaussian processesKernel ridge regressionMachine learningArtificial intelligenceDiseasesForecastingGaussian distributionGaussian noise (electronic)HealthLearning systemsPublic healthRegression analysisChikungunyaDengueGaussian processesKernel ridge regressionsMachine learning modelsMean absolute percentage errorResearch and developmentTime series forecastingLearning algorithms19 September 2017 through 22 September 2017(2017), https://github.com/williamcaicedo/morbidityPrediction, Accessed 25 Mar 2017Althouse, B.M., Ng, Y.Y., Cummings, D.A.T., Prediction of dengue incidence using search query surveillance (2011) Plos Negl. Trop. Dis, 5 (8), pp. 1-7. , http://dx.doi.org/10.1371Caicedo-Torres, W., Payares, F., A machine learning model for occupancy rates and demand forecasting in the hospitality industry (2016) IBERAMIA 2016. LNCS, 10022. , Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.), Springer, ChamCawley, G.C., Talbot, N.L.C., Reduced rank kernel ridge regression (2002) Neural Process. Lett, 16 (3), pp. 293-302. , http://dx.doi.org/10.1023/AChu, W., Ghahramani, Z., Gaussian processes for ordinal regression (2005) J. Mach. Learn. Res, 6, pp. 1019-1041Cortes, C., Vapnik, V., Support-vector networks (1995) Mach. Learn., 20 (3), pp. 273-297. , http://dx.doi.org/10.1007/BF00994018Cruz, J.A., Wishart, D.S., Applications of machine learning in cancer prediction and prognosis (2006) Cancer Inform, 2, pp. 59-77. , https://era.library.ualberta.ca/files/1v53jx76c/CancerInformatics2200759.pdfEastin, M.D., Delmelle, E., Casas, I., Wexler, J., Self, C., Intra-and interseasonal autoregressive prediction of dengue outbreaks using local weather and regional climate for a tropical environment in colombia (2014) Am. J. Trop. Med. Hyg., 91 (3), pp. 598-610Escobar, L.E., Qiao, H., Peterson, A.T., Forecasting chikungunya spread in the Americas via data-driven empirical approaches (2016) Parasites Vectors, 9 (1), p. 112. , http://dx.doi.org/10.1186/s13071-016-1403-yFlasche, S., Jit, M., Rodríguez-Barraquer, I., Coudeville, L., Recker, M., Koelle, K., Milne, G., Cummings, D.A., The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): A model comparison study (2016) Plos Med, 13 (11)Gilliland, M., Sglavo, U., Tashman, L., (2016) Business Forecasting: Practical Problems and Solutions, , http://dx.doi.org/10.1002/9781119244592, Wiley, HobokenGolding, N., Wilson, A.L., Moyes, C.L., Cano, J., Pigott, D.M., Velayud-Han, R., Brooker, S.J., Lindsay, S.W., Integrating vector control across diseases (2015) BMC Med, 13 (1), p. 249. , http://dx.doi.org/10.1186/s12916-015-0491-4Hesterberg, T., Choi, N.H., Meier, L., Fraley, C., Least angle and 1 penalized regression: A review (2008) Stat. Surv., 2, pp. 61-93Hoerl, A.E., Kennard, R.W., Ridge regression: Biased estimation for nonorthogonal problems (2000) Technometrics, 42 (1), pp. 80-86. , http://amstat.tandfonline.com/doi/abs/10.1080/00401706.2000.10485983Kucharz, E.J., Cebula-Byrska, I., Chikungunya fever (2012) Eur. J. Intern. Med., 23 (4), pp. 325-329. , http://www.sciencedirect.com/science/article/pii/S0953620512000337Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shep-Perd, M., Webster, S., An investigation of machine learning based prediction systems (2000) J. Syst. Softw., 53 (1), pp. 23-29. , http://www.sciencedirect.com/science/article/pii/S0164121200000054Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Dubourg, V., Scikit-learn: Machine learning in python (2011) J. Mach. Learn. Res, 12, pp. 2825-2830Rasmussen, C.E., (2004) Gaussian Processes in Machine Learning, pp. 63-71. , http://dx.doi.org/10.1007/978-3-540-28650-94Rasmussen, C.E., Williams, C.K., Gaussian Processes for Machine Learning. The MIT Press (2006) Cambridge, 2 (3), p. 4Robert, C., Machine learning, a probabilistic perspective (2014) CHANCE, 27 (2), pp. 62-63. , http://dx.doi.org/10.1080/09332480.2014.914768Rodríguez, J., Correa, C., Predicción temporal de la epidemia de dengue en colombia: Dinámica probabilista de la epidemia (2009) Revista De Salud Pública, 11 (3), pp. 443-453. , http://www.scielo.org.co/scielo.php?script=sciarttext&pid=S0124-00642009000300013&nrm=isoSchölkopf, B., Smola, A.J., (2002) Learning with Kernels: Support Vector Machines, Reg-Ularization, Optimization, and Beyond, , MIT press, CambridgeSilawan, T., Singhasivanon, P., Kaewkungwal, J., Nimmanitya, S., Suwonkerd, W., Temporal patterns and forecast of dengue infection in Northeastern Thailand. SE Asian J. Trop. Med (2008) Public Health, 39 (1), p. 90Simmons, C.P., Farrar, J.J., Van Vinh Chau, N., Wills, B., Dengue (2012) N. Engl. J. Med., 366 (15), pp. 1423-1432. , http://dx.doi.org/10.1056/NEJMra1110265, 22494122Smalley, C., Erasmus, J.H., Chesson, C.B., Beasley, D.W., Status of research and development of vaccines for chikungunya (2016) Vaccine, 34 (26), pp. 2976-2981Solomon, T., Mallewa, M., Dengue and other emerging flaviviruses (2001) J. Infect., 42 (2), pp. 104-115. , http://www.sciencedirect.com/science/article/pii/S0163445301908023Sutton, R.S., Learning to predict by the methods of temporal differences (1988) Mach. Learn., 3 (1), pp. 9-44. , http://dx.doi.org/10.1007/BF00115009Vannice, K.S., Durbin, A., Hombach, J., Status of vaccine research and development of vaccines for dengue (2016) Vaccine, 34 (26), pp. 2934-2938Walker, T., Jeffries, C.L., Mansfield, K.L., Johnson, N., Mosquito cell lines: History, isolation, availability and application to assess the threat of arbovi-ral transmission in the united kingdom (2014) Parasites Vectors, 7 (1), p. 382. , http://dx.doi.org/10.1186/1756-3305-7-382Williams, C.K., Rasmussen, C.E., Gaussian processes for regression (1996) Advances in Neural Information Processing Systems, pp. 514-520(2009) Dengue Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition, , http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf?ua=1(2009) World Health Organization - Dengue and Severe Dengue, , http://www.who.int/mediacentre/factsheets/fs117/en/, Accessed 25 March 2017(2017) World Health Organization - Chikungunya (, , http://www.who.int/mediacentre/factsheets/fs327/en/, Accessed 25 March 2017Yusof, Y., Mustaffa, Z., Dengue outbreak prediction: A least squares support vector machines approach (2011) Int. J. Comput. Theory Eng., 3 (4), p. 489http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8960/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8960oai:repositorio.utb.edu.co:20.500.12585/89602023-05-26 09:29:32.512Repositorio Institucional UTBrepositorioutb@utb.edu.co