Kernel-based machine learning models for the prediction of dengue and chikungunya morbidity in Colombia
Dengue and Chikungunya fever are two viral diseases of great public health concern in Colombia and other tropical countries as they are both transmitted by Aedes mosquitoes, which are endemic to this area. In recent years, there have been unprecedented outbreaks of these infections. Therefore, the d...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8960
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8960
- Palabra clave:
- Chikungunya
Dengue
Forecasting
Gaussian processes
Kernel ridge regression
Machine learning
Artificial intelligence
Diseases
Forecasting
Gaussian distribution
Gaussian noise (electronic)
Health
Learning systems
Public health
Regression analysis
Chikungunya
Dengue
Gaussian processes
Kernel ridge regressions
Machine learning models
Mean absolute percentage error
Research and development
Time series forecasting
Learning algorithms
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/