Assessing the significance of the correlation between the components of a bivariate Gaussian random field
Assessing the significance of the correlation between the components of a bivariate random field is of great interest in the analysis of spatial data. This problem has been addressed in the literature using suitable hypothesis testing procedures or using coefficients of spatial association between t...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9009
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9009
- Palabra clave:
- Cross-covariance estimation
Geostatistics
Hypothesis testing
Increasing domain
Power function
Arsenic
Assessment method
Autocorrelation
Estimation method
Geostatistics
Hypothesis testing
Lead
Numerical method
Numerical model
Power law
Spatial data
Testing method
United States
Utah
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/