Mixed-integer programming model for transmission network expansion planning with Battery Energy Storage Systems (BESS)

This article assesses the costs and benefits of incorporating battery energy storage systems (BESS) in transmission network expansion planning (TEP) over multiple time periods. We propose a mixed-integer programming model (MIP) for joint planning of the installation of battery energy storage systems...

Full description

Autores:
Mora, Camilo Andres
Montoya, Oscar Danilo
Rivas Trujillo, Edwin
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9548
Acceso en línea:
https://hdl.handle.net/20.500.12585/9548
https://www.mdpi.com/1996-1073/13/17/4386
Palabra clave:
Mixed-integer linear programming
Transmission expansion planning
Battery energy storage systems
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_315376cdd0fbb1a4bc1a03804b040acf
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9548
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Mixed-integer programming model for transmission network expansion planning with Battery Energy Storage Systems (BESS)
title Mixed-integer programming model for transmission network expansion planning with Battery Energy Storage Systems (BESS)
spellingShingle Mixed-integer programming model for transmission network expansion planning with Battery Energy Storage Systems (BESS)
Mixed-integer linear programming
Transmission expansion planning
Battery energy storage systems
title_short Mixed-integer programming model for transmission network expansion planning with Battery Energy Storage Systems (BESS)
title_full Mixed-integer programming model for transmission network expansion planning with Battery Energy Storage Systems (BESS)
title_fullStr Mixed-integer programming model for transmission network expansion planning with Battery Energy Storage Systems (BESS)
title_full_unstemmed Mixed-integer programming model for transmission network expansion planning with Battery Energy Storage Systems (BESS)
title_sort Mixed-integer programming model for transmission network expansion planning with Battery Energy Storage Systems (BESS)
dc.creator.fl_str_mv Mora, Camilo Andres
Montoya, Oscar Danilo
Rivas Trujillo, Edwin
dc.contributor.author.none.fl_str_mv Mora, Camilo Andres
Montoya, Oscar Danilo
Rivas Trujillo, Edwin
dc.subject.keywords.spa.fl_str_mv Mixed-integer linear programming
Transmission expansion planning
Battery energy storage systems
topic Mixed-integer linear programming
Transmission expansion planning
Battery energy storage systems
description This article assesses the costs and benefits of incorporating battery energy storage systems (BESS) in transmission network expansion planning (TEP) over multiple time periods. We propose a mixed-integer programming model (MIP) for joint planning of the installation of battery energy storage systems (BESS) and construction of new transmission lines in multiple periods of time. The mathematical formulation of the presented model is based on the strategies of the agents of a transmission network to maximize their benefit, and on the operational restrictions of the power flows in transmission networks. This analysis is performed for the Garver 6 node test system takes into account the power losses in the lines and the restrictions for the energy stored in BESS. The power flows obtained with the MIP model are compared with AC power flows generated with specialized software for flows in power systems. This allows us to demonstrate the potential of models based on DC power flows to achieve approximate results applicable to the behavior and characteristics of real transmission networks. The results show that the BESS increase the net profit in the transmission networks and reduce their power losses.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-04T21:44:15Z
dc.date.available.none.fl_str_mv 2020-11-04T21:44:15Z
dc.date.issued.none.fl_str_mv 2020-08-25
dc.date.submitted.none.fl_str_mv 2020-11-04
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Mora, C.A.; Montoya, O.D.; Trujillo, E.R. Mixed-Integer Programming Model for Transmission Network Expansion Planning with Battery Energy Storage Systems (BESS). Energies 2020, 13, 4386.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9548
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/1996-1073/13/17/4386
dc.identifier.doi.none.fl_str_mv 10.3390/en13174386
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Mora, C.A.; Montoya, O.D.; Trujillo, E.R. Mixed-Integer Programming Model for Transmission Network Expansion Planning with Battery Energy Storage Systems (BESS). Energies 2020, 13, 4386.
10.3390/en13174386
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9548
https://www.mdpi.com/1996-1073/13/17/4386
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 21 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Energies 2020, 13(17), 4386
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9548/1/94.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9548/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9548/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9548/4/94.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9548/5/94.pdf.jpg
bitstream.checksum.fl_str_mv d7068e850400feec63d7d46d2852a985
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
3d6ad521e796f60e67bd75e2bd782761
31116726e536e36caea00c5de64b4f3b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021722887684096
spelling Mora, Camilo Andres847aa9ca-865b-4454-9bc9-796eb3654607Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Rivas Trujillo, Edwin0720b1ee-acdc-4aea-b24b-fc319c4dd61c2020-11-04T21:44:15Z2020-11-04T21:44:15Z2020-08-252020-11-04Mora, C.A.; Montoya, O.D.; Trujillo, E.R. Mixed-Integer Programming Model for Transmission Network Expansion Planning with Battery Energy Storage Systems (BESS). Energies 2020, 13, 4386.https://hdl.handle.net/20.500.12585/9548https://www.mdpi.com/1996-1073/13/17/438610.3390/en13174386Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis article assesses the costs and benefits of incorporating battery energy storage systems (BESS) in transmission network expansion planning (TEP) over multiple time periods. We propose a mixed-integer programming model (MIP) for joint planning of the installation of battery energy storage systems (BESS) and construction of new transmission lines in multiple periods of time. The mathematical formulation of the presented model is based on the strategies of the agents of a transmission network to maximize their benefit, and on the operational restrictions of the power flows in transmission networks. This analysis is performed for the Garver 6 node test system takes into account the power losses in the lines and the restrictions for the energy stored in BESS. The power flows obtained with the MIP model are compared with AC power flows generated with specialized software for flows in power systems. This allows us to demonstrate the potential of models based on DC power flows to achieve approximate results applicable to the behavior and characteristics of real transmission networks. The results show that the BESS increase the net profit in the transmission networks and reduce their power losses.21 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Energies 2020, 13(17), 4386Mixed-integer programming model for transmission network expansion planning with Battery Energy Storage Systems (BESS)info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Mixed-integer linear programmingTransmission expansion planningBattery energy storage systemsCartagena de IndiasPúblico generalGbadamosi, S.L.; Nwulu, N.I. A multi-period composite generation and transmission expansion planning model incorporating renewable energy sources and demand response. Sustain. Energy Technol. Assess. 2020, 39, 100726.Maghouli, P.; Hosseini, S.H.; Buygi, M.O.; Shahidehpour, M. A multi-objective framework for transmission expansion planning in deregulated environments. IEEE Trans. Power Syst. 2009, 24, 1051–1061.Rosellón, J. Different Approaches Towards Electricity Transmission Expansion. Rev. Netw. Econ. 2009, 2.Lumbreras, S.; Ramos, A. The new challenges to transmission expansion planning. Survey of recent practice and literature review. Electr. Power Syst. Res. 2016, 134, 19–29Aguado, J.A.; de la Torre, S.; Triviño, A. Battery energy storage systems in transmission network expansion planning. Electr. Power Syst. Res. 2017, 145, 63–72.Castro, T.E.G.; Jesus, L.L.M.; Trujillo, E.R. Literature review of BESS implementation in DER. Rev. Vínculos Cienc. Tecnol. Y Soc. 2019, 16, 321–326.Mazaheri, H.; Abbaspour, A.; Fotuhi-Firuzabad, M.; Farzin, H.; Moeini-Aghtaie, M. Investigating the impacts of energy storage systems on transmission expansion planning. In Proceedings of the 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, Tehran, Iran, 2–4 May 2017; pp. 1199–1203.Denholm, P.; Sioshansi, R. The value of compressed air energy storage with wind in transmission-constrained electric power systems. Energy Policy 2009, 37, 3149–3158.Wogrin, S.; Gayme, D.F. Optimizing Storage Siting, Sizing, and Technology Portfolios in TransmissionConstrained Networks. IEEE Trans. Power Syst. 2015, 30, 3304–3313.Zhang, F.; Hu, Z.; Song, Y. Mixed-integer linear model for transmission expansion planning with line losses and energy storage systems. IET Gener. Transm. Distrib. 2013, 7, 919–928Worighi, I.; Maach, A.; Hafid, A.; Hegazy, O.; van Mierlo, J. Integrating renewable energy in smart grid system: Architecture, virtualization and analysis. Sustain. Energy Grids Netw. 2019, 18, 100226.Nwulu, N.I.; Xia, X. Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs. Energy Convers. Manag. 2015, 89, 963–974.Aguado, J.A.; de la Torre, S.; Contreras, J.; Conejo, A.J.; Martínez, A. Market-driven dynamic transmission expansion planning. Electr. Power Syst. Res. 2012, 82, 88–94.de la Torre, S.; Conejo, A.J.; Contreras, J. Transmission expansion planning in electricity markets. IEEE Trans. Power Syst. 2008, 23, 238–248.Latorre, G.; Cruz, R.D.; Areiza, J.M.; Villegas, A. Classification of publications and models on transmission expansion planning. IEEE Trans. Power Syst. 2003, 18, 938–946.Garzillo, A.; Cazzol, M.V.; L’Abbate, A.; Migliavacca, G.; Mansoldox, A.; Riverax, A.; Nortonx, M. Offshore grids in Europe: The strategy of Ireland for 2020 and beyond. In Proceedings of the 9th IET International Conference on AC and DC Power Transmission (ACDC 2010), London, UK, 19–21 October 2010; Volume 2010, p. O64.Alguacil, N.; Motto, A.L.; Conejo, A.J. Transmission expansion planning: A mixed-integer LP approach. IEEE Trans. Power Syst. 2003, 18, 1070–1077.Zhang, H.; Heydt, G.T.; Vittal, V.; Quintero, J. An improved network model for transmission expansion planning considering reactive power and network losses. IEEE Trans. Power Syst. 2013, 28, 3471–3479.Youssef, H.K.; Hackam, R. New transmission planning model. IEEE Trans. Power Syst. 1989, 4, 9–18.Rahmani, M.; Rashidinejad, M.; Carreno, E.M.; Romero, R. Efficient method for AC transmission network expansion planning. Electr. Power Syst. Res. 2010, 80, 1056–1064.Qiu, T.; Xu, B.; Wang, Y.; Dvorkin, Y.; Kirschen, D.S. Stochastic Multistage Coplanning of Transmission Expansion and Energy Storage. IEEE Trans. Power Syst. 2017, 32, 643–651.Mexis, I.; Todeschini, G. Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications. Energies 2020, 13, 3616.Tsianikas, S.; Zhou, J.; Iii, D.P.B.; Coit, D.W. Economic trends and comparisons for optimizing grid-outage resilient photovoltaic and battery systems. Appl. Energy 2019.Marnell, K.; Obi, M.; Bass, R. Transmission-Scale Battery Energy Storage Systems: A Systematic Literature Review. Energies 2019, 12, 4603Villasana, R.; Salon, S.J.; Garver, L.L. Transmission network planning using linear programming. IEEE Trans. Power Appar. Syst. 1985, PAS-104, 349–356.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL94.pdf94.pdfArtículo principalapplication/pdf3414438https://repositorio.utb.edu.co/bitstream/20.500.12585/9548/1/94.pdfd7068e850400feec63d7d46d2852a985MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/9548/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9548/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT94.pdf.txt94.pdf.txtExtracted texttext/plain59039https://repositorio.utb.edu.co/bitstream/20.500.12585/9548/4/94.pdf.txt3d6ad521e796f60e67bd75e2bd782761MD54THUMBNAIL94.pdf.jpg94.pdf.jpgGenerated Thumbnailimage/jpeg88146https://repositorio.utb.edu.co/bitstream/20.500.12585/9548/5/94.pdf.jpg31116726e536e36caea00c5de64b4f3bMD5520.500.12585/9548oai:repositorio.utb.edu.co:20.500.12585/95482020-11-25 13:02:18.545Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=