A computer vision system for detecting motorcycle violations in pedestrian zones

This paper presents a system that relies on computer vision to identify instances of motorcycle violations in crosswalks utilizing CNNs. The system was trained and evaluated on a novel public dataset published by the authors, which contains traffic images classified into four categories: motorcycles...

Full description

Autores:
Hernández-Díaz, Nicolás
Peñaloza, Yersica C.
Rios, Y. Yuliana
Martínez-Santos, Juan Carlos
Puertas, Edwin
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12684
Acceso en línea:
https://hdl.handle.net/20.500.12585/12684
https://doi.org/10.1007/s11042-024-19356-9
Palabra clave:
IA model
Computer vision
Machine learning
Pedestrian areas
Autonomous traffic control system
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/