A computer vision system for detecting motorcycle violations in pedestrian zones
This paper presents a system that relies on computer vision to identify instances of motorcycle violations in crosswalks utilizing CNNs. The system was trained and evaluated on a novel public dataset published by the authors, which contains traffic images classified into four categories: motorcycles...
- Autores:
-
Hernández-Díaz, Nicolás
Peñaloza, Yersica C.
Rios, Y. Yuliana
Martínez-Santos, Juan Carlos
Puertas, Edwin
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12684
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12684
https://doi.org/10.1007/s11042-024-19356-9
- Palabra clave:
- IA model
Computer vision
Machine learning
Pedestrian areas
Autonomous traffic control system
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/