Data-driven framework for the detection of non-technical losses in distribution grids
Non-technical losses (NTL) occurring in the electric grid, particularly at the distribution level may cause a negative impact on utilities' interest, paying consumers and states. Reducing NTL can increase revenue, profit, reliability, among other aspects of the power system. Therefore, this sub...
- Autores:
-
De la Hoz Domínguez, Enrique José
Rivera, A.
Botina, K.
Perdomo, G.A
Montoya, O.
Campillo Jiménez, Javier Eduardo
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9954
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9954
https://ieeexplore.ieee.org/document/9290186
- Palabra clave:
- Non-technical losses
Machine learning
Feature selection
Distribution grids
LEMB
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_19a1cc6c1da922b88d9a25acccfa9925 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9954 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Data-driven framework for the detection of non-technical losses in distribution grids |
title |
Data-driven framework for the detection of non-technical losses in distribution grids |
spellingShingle |
Data-driven framework for the detection of non-technical losses in distribution grids Non-technical losses Machine learning Feature selection Distribution grids LEMB |
title_short |
Data-driven framework for the detection of non-technical losses in distribution grids |
title_full |
Data-driven framework for the detection of non-technical losses in distribution grids |
title_fullStr |
Data-driven framework for the detection of non-technical losses in distribution grids |
title_full_unstemmed |
Data-driven framework for the detection of non-technical losses in distribution grids |
title_sort |
Data-driven framework for the detection of non-technical losses in distribution grids |
dc.creator.fl_str_mv |
De la Hoz Domínguez, Enrique José Rivera, A. Botina, K. Perdomo, G.A Montoya, O. Campillo Jiménez, Javier Eduardo |
dc.contributor.author.none.fl_str_mv |
De la Hoz Domínguez, Enrique José Rivera, A. Botina, K. Perdomo, G.A Montoya, O. Campillo Jiménez, Javier Eduardo |
dc.subject.keywords.spa.fl_str_mv |
Non-technical losses Machine learning Feature selection Distribution grids |
topic |
Non-technical losses Machine learning Feature selection Distribution grids LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Non-technical losses (NTL) occurring in the electric grid, particularly at the distribution level may cause a negative impact on utilities' interest, paying consumers and states. Reducing NTL can increase revenue, profit, reliability, among other aspects of the power system. Therefore, this subject brings for a critical concern to utilities and authorities. This study proposes the recognition of NTL using several machine learning models. The dataset was provided by a distributor system operator (DSO) in the coastal region in Colombia. Nine (9) models were trained and tested, considering not only aspects related to energy consumption but socio-demographics also. Three feature selection methods were used to reduce the number of final predictors. The models were evaluated through the accuracy and the F1 score using a 10-fold cross-validation algorithm. Results showed that the final subsets provided enough overall performance. However, the best subset correspond to the Tree-based subset. A gradient boosting machine was the model outperformed the rest, giving a mean accuracy of 74.3% and an F1 score of 83.1. These results represent great insights to local DSO and utilities to join artificial intelligence to their energy meters to reduce NTL significantly and therefore increase profit and reliability. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-12-24 |
dc.date.accessioned.none.fl_str_mv |
2021-02-08T16:29:53Z |
dc.date.available.none.fl_str_mv |
2021-02-08T16:29:53Z |
dc.date.submitted.none.fl_str_mv |
2021-02-08 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/lecture |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8544 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
J. A. Dominguez et al., "Data-driven framework for the detection of non-technical losses in distribution grids," 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena de Indias, Colombia, 2020, pp. 1-6, doi: 10.1109/CIIMA50553.2020.9290186. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9954 |
dc.identifier.url.none.fl_str_mv |
https://ieeexplore.ieee.org/document/9290186 |
dc.identifier.doi.none.fl_str_mv |
10.1109/CIIMA50553.2020.9290186 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
J. A. Dominguez et al., "Data-driven framework for the detection of non-technical losses in distribution grids," 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena de Indias, Colombia, 2020, pp. 1-6, doi: 10.1109/CIIMA50553.2020.9290186. 10.1109/CIIMA50553.2020.9290186 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9954 https://ieeexplore.ieee.org/document/9290186 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.extent.none.fl_str_mv |
6 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/1/122.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/3/122.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/4/122.pdf.jpg |
bitstream.checksum.fl_str_mv |
5fa69b4542e4e17d1d22bb629464972d e20ad307a1c5f3f25af9304a7a7c86b6 fd1ed8012270decada9ccdb3ea45e62f 7b6242963d2114792e71fd5101918c22 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021703404093440 |
spelling |
De la Hoz Domínguez, Enrique Josée13f2e38-5b17-430f-b808-36bd4f35d061Rivera, A.de51a58a-b1bf-4fe4-8067-533abd527ae3Botina, K.8e3fa946-3482-44b2-bb17-a9b5ed07a9f1Perdomo, G.Afd86c6ce-32ba-4904-9225-38c1a61c6248Montoya, O.27ff4177-1725-4ebd-bfb1-60814364e669Campillo Jiménez, Javier Eduardo8c4725e9-5e97-40df-b9ae-f67c73617ff32021-02-08T16:29:53Z2021-02-08T16:29:53Z2020-12-242021-02-08J. A. Dominguez et al., "Data-driven framework for the detection of non-technical losses in distribution grids," 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena de Indias, Colombia, 2020, pp. 1-6, doi: 10.1109/CIIMA50553.2020.9290186.https://hdl.handle.net/20.500.12585/9954https://ieeexplore.ieee.org/document/929018610.1109/CIIMA50553.2020.9290186Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarNon-technical losses (NTL) occurring in the electric grid, particularly at the distribution level may cause a negative impact on utilities' interest, paying consumers and states. Reducing NTL can increase revenue, profit, reliability, among other aspects of the power system. Therefore, this subject brings for a critical concern to utilities and authorities. This study proposes the recognition of NTL using several machine learning models. The dataset was provided by a distributor system operator (DSO) in the coastal region in Colombia. Nine (9) models were trained and tested, considering not only aspects related to energy consumption but socio-demographics also. Three feature selection methods were used to reduce the number of final predictors. The models were evaluated through the accuracy and the F1 score using a 10-fold cross-validation algorithm. Results showed that the final subsets provided enough overall performance. However, the best subset correspond to the Tree-based subset. A gradient boosting machine was the model outperformed the rest, giving a mean accuracy of 74.3% and an F1 score of 83.1. These results represent great insights to local DSO and utilities to join artificial intelligence to their energy meters to reduce NTL significantly and therefore increase profit and reliability.6 páginasapplication/pdfeng2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA)Data-driven framework for the detection of non-technical losses in distribution gridsinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85Non-technical lossesMachine learningFeature selectionDistribution gridsLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresJA Meira, P. Glauner, R. State, P. Valtchev, L. Dolberg, F. Bet-Tinger, et al., "Destilación de datos independientes del proveedor para la detección general de pérdidas no técnicas", 2017 IEEE Power and Energy Conference en Illinois (PECI) , págs. 1-5, febrero de 2017.P. Glauner, JA Meira, P. Valtchev, R. State y F. Bettinger, "El desafío de la detección de pérdidas no técnicas utilizando inteligencia artificial: una encuesta", Revista Internacional de Sistemas de Inteligencia Computacional , vol. 10, no. 1 de 2017.A. Meffe y CCB de Oliveira, "Cálculo de pérdidas técnicas por segmento del sistema de distribución con correcciones de mediciones", CIRED 2009 - 20ª Conferencia y Exposición Internacional sobre Distribución de Electricidad - Parte 1 , págs. 1-4, junio de 2009, ISSN 0537-9989.P. Chandel, T. Thakur y BA Sawale, "Manipulación de contadores de energía: principal causa de pérdidas no técnicas en el sector de distribución de la India", Conferencia internacional de 2016 sobre energía eléctrica y sistemas de energía (ICEPES) , págs. 368-371, Diciembre de 2016.W. Bank, Pérdidas de transmisión y distribución de energía eléctrica (% de la producción) I Datos , [en línea] Disponible: https://data.worldbank.org/indicatorIEG.ELC.LOSS.ZS.F. Jamil y E. Ahmad, "Un estudio empírico sobre el robo de electricidad de las empresas de distribución de electricidad en Pakistán" en The Pakistan Development Review, Islamabad: editor: Pakistan Institute of Development Economics, vol. 53, no. 3, págs.239-254, 2014.R. Razavi, A. Gharipour, M. Fleury e IJ Ak-Pan, "Un marco práctico de ingeniería de características para la detección del robo de electricidad en redes inteligentes", Applied Energy , vol. 238, págs. 481-494, marzo de 2019.M. Anas, N. Javaid, A. Mahmood, SM Raza, U. Qasim y ZA Khan, "Minimizing Electricity Theft Using Smart Meters in AMI", Actas de la Séptima Conferencia Internacional de 2012 sobre P2P Parallel Grid Cloud and Internet Computing ser. 3PGCIC '12. Estados Unidos: IEEE Computer Society , págs.176-182, noviembre de 2012.W. Doorduin, H. Mouton, R. Herman y H. Beukes, "Estudio de viabilidad de la detección de robo de electricidad utilizando medidores de control remoto móviles", 2004 IEEE Africon. 7ª Conferencia de Africon en África (IEEE Cat. No. 04CH37590) , vol. 1, págs. 373-376, septiembre de 2004.M. Tariq y HV Poor, "Detección y localización de robos de electricidad en microrredes conectadas a la red", IEEE Transactions on Smart Grid , vol. 9, no. 3, págs. 1920-1929, mayo de 2018.S. Musungwini, "Un marco para monitorear el robo de electricidad en Zimbabwe usando tecnologías móviles", Journal of Systems Integration , vol. 7, no. 3, págs.54-65-65, julio de 2016.YA Jawad e I. Ayyash, "Analizar el estudio de caso de pérdida de electricidad en Palestina: Ramallah y la gobernación de Al-Bireh", Revista Internacional de Economía y Política Energética , vol. 10, no. 1, págs.7-15, noviembre de 2019.H. Briseno y O. Rojas, "Factores asociados con el robo de electricidad en México", Revista Internacional de Economía y Política Energética , vol. 10, no. 3, págs. 250-254, marzo de 2020.G. Figueroa, Y.-S. Chen, N. Avila y C.-C. Chu, "Prácticas mejoradas en algoritmos de aprendizaje automático para la detección de NTL con datos desequilibrados", Reunión general de la Sociedad de Energía y Energía de IEEE 2017 , págs. 1-5, julio de 2017.KM Ghori, RA Abbasi, M. Awais, M. Imran, A. Ullah y L. Szathmary, "Análisis de rendimiento de diferentes tipos de clasificadores de aprendizaje automático para la detección de pérdidas no técnicas", IEEE Access , vol. 8, págs.16033-16048, 2020.B. Coma-Puig y J. Carmona, "Cerrar la brecha entre el consumo y la distribución de energía mediante la detección de pérdidas no técnicas", Energías , vol. 12, no. 9, págs. 1748, mayo de 2019.M. Anwar, N. Javaid, A. Khalid, M. Imran y M. Shoaib, "Detección de robo de electricidad mediante tuberías en el aprendizaje automático", Comunicaciones inalámbricas internacionales y computación móvil (IWCMC) de 2020 , págs. 2138-2142, Junio de 2020.JL Viegas, PR Esteves y SM Vieira, "Detección de novedades basada en agrupaciones para la identificación de pérdidas no técnicas", Revista Internacional de Energía Eléctrica y Sistemas de Energía , vol. 101, págs.301-310, octubre de 2018.C. Ramos y C.-C. Liu, "IA en sistemas de potencia y mercados de energía", IEEE Intelligent Systems , vol. 26, no. 2, págs. 5-8, marzo de 2011.T. Ahmad, "Análisis y prevención de pérdidas no técnicas mediante contadores inteligentes", Renewable and Sustainable Energy Reviews , vol. 72, págs.573-589, mayo de 2017.http://purl.org/coar/resource_type/c_c94fORIGINAL122.pdf122.pdfAbstractapplication/pdf67237https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/1/122.pdf5fa69b4542e4e17d1d22bb629464972dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT122.pdf.txt122.pdf.txtExtracted texttext/plain1437https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/3/122.pdf.txtfd1ed8012270decada9ccdb3ea45e62fMD53THUMBNAIL122.pdf.jpg122.pdf.jpgGenerated Thumbnailimage/jpeg58893https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/4/122.pdf.jpg7b6242963d2114792e71fd5101918c22MD5420.500.12585/9954oai:repositorio.utb.edu.co:20.500.12585/99542023-05-25 16:54:03.016Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |