Data-driven framework for the detection of non-technical losses in distribution grids

Non-technical losses (NTL) occurring in the electric grid, particularly at the distribution level may cause a negative impact on utilities' interest, paying consumers and states. Reducing NTL can increase revenue, profit, reliability, among other aspects of the power system. Therefore, this sub...

Full description

Autores:
De la Hoz Domínguez, Enrique José
Rivera, A.
Botina, K.
Perdomo, G.A
Montoya, O.
Campillo Jiménez, Javier Eduardo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9954
Acceso en línea:
https://hdl.handle.net/20.500.12585/9954
https://ieeexplore.ieee.org/document/9290186
Palabra clave:
Non-technical losses
Machine learning
Feature selection
Distribution grids
LEMB
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_19a1cc6c1da922b88d9a25acccfa9925
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9954
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Data-driven framework for the detection of non-technical losses in distribution grids
title Data-driven framework for the detection of non-technical losses in distribution grids
spellingShingle Data-driven framework for the detection of non-technical losses in distribution grids
Non-technical losses
Machine learning
Feature selection
Distribution grids
LEMB
title_short Data-driven framework for the detection of non-technical losses in distribution grids
title_full Data-driven framework for the detection of non-technical losses in distribution grids
title_fullStr Data-driven framework for the detection of non-technical losses in distribution grids
title_full_unstemmed Data-driven framework for the detection of non-technical losses in distribution grids
title_sort Data-driven framework for the detection of non-technical losses in distribution grids
dc.creator.fl_str_mv De la Hoz Domínguez, Enrique José
Rivera, A.
Botina, K.
Perdomo, G.A
Montoya, O.
Campillo Jiménez, Javier Eduardo
dc.contributor.author.none.fl_str_mv De la Hoz Domínguez, Enrique José
Rivera, A.
Botina, K.
Perdomo, G.A
Montoya, O.
Campillo Jiménez, Javier Eduardo
dc.subject.keywords.spa.fl_str_mv Non-technical losses
Machine learning
Feature selection
Distribution grids
topic Non-technical losses
Machine learning
Feature selection
Distribution grids
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Non-technical losses (NTL) occurring in the electric grid, particularly at the distribution level may cause a negative impact on utilities' interest, paying consumers and states. Reducing NTL can increase revenue, profit, reliability, among other aspects of the power system. Therefore, this subject brings for a critical concern to utilities and authorities. This study proposes the recognition of NTL using several machine learning models. The dataset was provided by a distributor system operator (DSO) in the coastal region in Colombia. Nine (9) models were trained and tested, considering not only aspects related to energy consumption but socio-demographics also. Three feature selection methods were used to reduce the number of final predictors. The models were evaluated through the accuracy and the F1 score using a 10-fold cross-validation algorithm. Results showed that the final subsets provided enough overall performance. However, the best subset correspond to the Tree-based subset. A gradient boosting machine was the model outperformed the rest, giving a mean accuracy of 74.3% and an F1 score of 83.1. These results represent great insights to local DSO and utilities to join artificial intelligence to their energy meters to reduce NTL significantly and therefore increase profit and reliability.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-12-24
dc.date.accessioned.none.fl_str_mv 2021-02-08T16:29:53Z
dc.date.available.none.fl_str_mv 2021-02-08T16:29:53Z
dc.date.submitted.none.fl_str_mv 2021-02-08
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_8544
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv J. A. Dominguez et al., "Data-driven framework for the detection of non-technical losses in distribution grids," 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena de Indias, Colombia, 2020, pp. 1-6, doi: 10.1109/CIIMA50553.2020.9290186.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9954
dc.identifier.url.none.fl_str_mv https://ieeexplore.ieee.org/document/9290186
dc.identifier.doi.none.fl_str_mv 10.1109/CIIMA50553.2020.9290186
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv J. A. Dominguez et al., "Data-driven framework for the detection of non-technical losses in distribution grids," 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena de Indias, Colombia, 2020, pp. 1-6, doi: 10.1109/CIIMA50553.2020.9290186.
10.1109/CIIMA50553.2020.9290186
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9954
https://ieeexplore.ieee.org/document/9290186
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/1/122.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/3/122.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/4/122.pdf.jpg
bitstream.checksum.fl_str_mv 5fa69b4542e4e17d1d22bb629464972d
e20ad307a1c5f3f25af9304a7a7c86b6
fd1ed8012270decada9ccdb3ea45e62f
7b6242963d2114792e71fd5101918c22
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021703404093440
spelling De la Hoz Domínguez, Enrique Josée13f2e38-5b17-430f-b808-36bd4f35d061Rivera, A.de51a58a-b1bf-4fe4-8067-533abd527ae3Botina, K.8e3fa946-3482-44b2-bb17-a9b5ed07a9f1Perdomo, G.Afd86c6ce-32ba-4904-9225-38c1a61c6248Montoya, O.27ff4177-1725-4ebd-bfb1-60814364e669Campillo Jiménez, Javier Eduardo8c4725e9-5e97-40df-b9ae-f67c73617ff32021-02-08T16:29:53Z2021-02-08T16:29:53Z2020-12-242021-02-08J. A. Dominguez et al., "Data-driven framework for the detection of non-technical losses in distribution grids," 2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA), Cartagena de Indias, Colombia, 2020, pp. 1-6, doi: 10.1109/CIIMA50553.2020.9290186.https://hdl.handle.net/20.500.12585/9954https://ieeexplore.ieee.org/document/929018610.1109/CIIMA50553.2020.9290186Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarNon-technical losses (NTL) occurring in the electric grid, particularly at the distribution level may cause a negative impact on utilities' interest, paying consumers and states. Reducing NTL can increase revenue, profit, reliability, among other aspects of the power system. Therefore, this subject brings for a critical concern to utilities and authorities. This study proposes the recognition of NTL using several machine learning models. The dataset was provided by a distributor system operator (DSO) in the coastal region in Colombia. Nine (9) models were trained and tested, considering not only aspects related to energy consumption but socio-demographics also. Three feature selection methods were used to reduce the number of final predictors. The models were evaluated through the accuracy and the F1 score using a 10-fold cross-validation algorithm. Results showed that the final subsets provided enough overall performance. However, the best subset correspond to the Tree-based subset. A gradient boosting machine was the model outperformed the rest, giving a mean accuracy of 74.3% and an F1 score of 83.1. These results represent great insights to local DSO and utilities to join artificial intelligence to their energy meters to reduce NTL significantly and therefore increase profit and reliability.6 páginasapplication/pdfeng2020 IX International Congress of Mechatronics Engineering and Automation (CIIMA)Data-driven framework for the detection of non-technical losses in distribution gridsinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8544http://purl.org/coar/version/c_970fb48d4fbd8a85Non-technical lossesMachine learningFeature selectionDistribution gridsLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresJA Meira, P. Glauner, R. State, P. Valtchev, L. Dolberg, F. Bet-Tinger, et al., "Destilación de datos independientes del proveedor para la detección general de pérdidas no técnicas", 2017 IEEE Power and Energy Conference en Illinois (PECI) , págs. 1-5, febrero de 2017.P. Glauner, JA Meira, P. Valtchev, R. State y F. Bettinger, "El desafío de la detección de pérdidas no técnicas utilizando inteligencia artificial: una encuesta", Revista Internacional de Sistemas de Inteligencia Computacional , vol. 10, no. 1 de 2017.A. Meffe y CCB de Oliveira, "Cálculo de pérdidas técnicas por segmento del sistema de distribución con correcciones de mediciones", CIRED 2009 - 20ª Conferencia y Exposición Internacional sobre Distribución de Electricidad - Parte 1 , págs. 1-4, junio de 2009, ISSN 0537-9989.P. Chandel, T. Thakur y BA Sawale, "Manipulación de contadores de energía: principal causa de pérdidas no técnicas en el sector de distribución de la India", Conferencia internacional de 2016 sobre energía eléctrica y sistemas de energía (ICEPES) , págs. 368-371, Diciembre de 2016.W. Bank, Pérdidas de transmisión y distribución de energía eléctrica (% de la producción) I Datos , [en línea] Disponible: https://data.worldbank.org/indicatorIEG.ELC.LOSS.ZS.F. Jamil y E. Ahmad, "Un estudio empírico sobre el robo de electricidad de las empresas de distribución de electricidad en Pakistán" en The Pakistan Development Review, Islamabad: editor: Pakistan Institute of Development Economics, vol. 53, no. 3, págs.239-254, 2014.R. Razavi, A. Gharipour, M. Fleury e IJ Ak-Pan, "Un marco práctico de ingeniería de características para la detección del robo de electricidad en redes inteligentes", Applied Energy , vol. 238, págs. 481-494, marzo de 2019.M. Anas, N. Javaid, A. Mahmood, SM Raza, U. Qasim y ZA Khan, "Minimizing Electricity Theft Using Smart Meters in AMI", Actas de la Séptima Conferencia Internacional de 2012 sobre P2P Parallel Grid Cloud and Internet Computing ser. 3PGCIC '12. Estados Unidos: IEEE Computer Society , págs.176-182, noviembre de 2012.W. Doorduin, H. Mouton, R. Herman y H. Beukes, "Estudio de viabilidad de la detección de robo de electricidad utilizando medidores de control remoto móviles", 2004 IEEE Africon. 7ª Conferencia de Africon en África (IEEE Cat. No. 04CH37590) , vol. 1, págs. 373-376, septiembre de 2004.M. Tariq y HV Poor, "Detección y localización de robos de electricidad en microrredes conectadas a la red", IEEE Transactions on Smart Grid , vol. 9, no. 3, págs. 1920-1929, mayo de 2018.S. Musungwini, "Un marco para monitorear el robo de electricidad en Zimbabwe usando tecnologías móviles", Journal of Systems Integration , vol. 7, no. 3, págs.54-65-65, julio de 2016.YA Jawad e I. Ayyash, "Analizar el estudio de caso de pérdida de electricidad en Palestina: Ramallah y la gobernación de Al-Bireh", Revista Internacional de Economía y Política Energética , vol. 10, no. 1, págs.7-15, noviembre de 2019.H. Briseno y O. Rojas, "Factores asociados con el robo de electricidad en México", Revista Internacional de Economía y Política Energética , vol. 10, no. 3, págs. 250-254, marzo de 2020.G. Figueroa, Y.-S. Chen, N. Avila y C.-C. Chu, "Prácticas mejoradas en algoritmos de aprendizaje automático para la detección de NTL con datos desequilibrados", Reunión general de la Sociedad de Energía y Energía de IEEE 2017 , págs. 1-5, julio de 2017.KM Ghori, RA Abbasi, M. Awais, M. Imran, A. Ullah y L. Szathmary, "Análisis de rendimiento de diferentes tipos de clasificadores de aprendizaje automático para la detección de pérdidas no técnicas", IEEE Access , vol. 8, págs.16033-16048, 2020.B. Coma-Puig y J. Carmona, "Cerrar la brecha entre el consumo y la distribución de energía mediante la detección de pérdidas no técnicas", Energías , vol. 12, no. 9, págs. 1748, mayo de 2019.M. Anwar, N. Javaid, A. Khalid, M. Imran y M. Shoaib, "Detección de robo de electricidad mediante tuberías en el aprendizaje automático", Comunicaciones inalámbricas internacionales y computación móvil (IWCMC) de 2020 , págs. 2138-2142, Junio ​​de 2020.JL Viegas, PR Esteves y SM Vieira, "Detección de novedades basada en agrupaciones para la identificación de pérdidas no técnicas", Revista Internacional de Energía Eléctrica y Sistemas de Energía , vol. 101, págs.301-310, octubre de 2018.C. Ramos y C.-C. Liu, "IA en sistemas de potencia y mercados de energía", IEEE Intelligent Systems , vol. 26, no. 2, págs. 5-8, marzo de 2011.T. Ahmad, "Análisis y prevención de pérdidas no técnicas mediante contadores inteligentes", Renewable and Sustainable Energy Reviews , vol. 72, págs.573-589, mayo de 2017.http://purl.org/coar/resource_type/c_c94fORIGINAL122.pdf122.pdfAbstractapplication/pdf67237https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/1/122.pdf5fa69b4542e4e17d1d22bb629464972dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT122.pdf.txt122.pdf.txtExtracted texttext/plain1437https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/3/122.pdf.txtfd1ed8012270decada9ccdb3ea45e62fMD53THUMBNAIL122.pdf.jpg122.pdf.jpgGenerated Thumbnailimage/jpeg58893https://repositorio.utb.edu.co/bitstream/20.500.12585/9954/4/122.pdf.jpg7b6242963d2114792e71fd5101918c22MD5420.500.12585/9954oai:repositorio.utb.edu.co:20.500.12585/99542023-05-25 16:54:03.016Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=