Data-driven framework for the detection of non-technical losses in distribution grids
Non-technical losses (NTL) occurring in the electric grid, particularly at the distribution level may cause a negative impact on utilities' interest, paying consumers and states. Reducing NTL can increase revenue, profit, reliability, among other aspects of the power system. Therefore, this sub...
- Autores:
-
De la Hoz Domínguez, Enrique José
Rivera, A.
Botina, K.
Perdomo, G.A
Montoya, O.
Campillo Jiménez, Javier Eduardo
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9954
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9954
https://ieeexplore.ieee.org/document/9290186
- Palabra clave:
- Non-technical losses
Machine learning
Feature selection
Distribution grids
LEMB
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb