Data-driven framework for the detection of non-technical losses in distribution grids

Non-technical losses (NTL) occurring in the electric grid, particularly at the distribution level may cause a negative impact on utilities' interest, paying consumers and states. Reducing NTL can increase revenue, profit, reliability, among other aspects of the power system. Therefore, this sub...

Full description

Autores:
De la Hoz Domínguez, Enrique José
Rivera, A.
Botina, K.
Perdomo, G.A
Montoya, O.
Campillo Jiménez, Javier Eduardo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9954
Acceso en línea:
https://hdl.handle.net/20.500.12585/9954
https://ieeexplore.ieee.org/document/9290186
Palabra clave:
Non-technical losses
Machine learning
Feature selection
Distribution grids
LEMB
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb