Implementation of an Unmanned Surface Vehicle for Environmental Monitoring Applications
Environmental monitoring in inland waters is an important issue for adequate planning and management of this kind of territories. This paper shows the implementation of the concepts and strategies for a boat to follow a pre-established route through waypoints oriented to these water bodies. An exten...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9202
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9202
- Palabra clave:
- Autonomous Vehicles
Environmental monitoring
Marine robotics
Navigation
Quaternion
Sensor fusion
Autonomous vehicles
Environmental engineering
Kalman filters
Marine navigation
Navigation
Robotics
Robots
Unmanned surface vehicles
Calm conditions
Environmental monitoring
Inertial units
Inland waters
Marine robotics
Quaternion
Sensor fusion
Waterbodies
Environmental management
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_1307bdfd4d2f60dabc1494f914b169f4 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9202 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Implementation of an Unmanned Surface Vehicle for Environmental Monitoring Applications |
title |
Implementation of an Unmanned Surface Vehicle for Environmental Monitoring Applications |
spellingShingle |
Implementation of an Unmanned Surface Vehicle for Environmental Monitoring Applications Autonomous Vehicles Environmental monitoring Marine robotics Navigation Quaternion Sensor fusion Autonomous vehicles Environmental engineering Kalman filters Marine navigation Navigation Robotics Robots Unmanned surface vehicles Calm conditions Environmental monitoring Inertial units Inland waters Marine robotics Quaternion Sensor fusion Waterbodies Environmental management |
title_short |
Implementation of an Unmanned Surface Vehicle for Environmental Monitoring Applications |
title_full |
Implementation of an Unmanned Surface Vehicle for Environmental Monitoring Applications |
title_fullStr |
Implementation of an Unmanned Surface Vehicle for Environmental Monitoring Applications |
title_full_unstemmed |
Implementation of an Unmanned Surface Vehicle for Environmental Monitoring Applications |
title_sort |
Implementation of an Unmanned Surface Vehicle for Environmental Monitoring Applications |
dc.contributor.editor.none.fl_str_mv |
Garcia L. Wightman P. Percybrooks W. Carrillo H. Quintero C. |
dc.subject.keywords.none.fl_str_mv |
Autonomous Vehicles Environmental monitoring Marine robotics Navigation Quaternion Sensor fusion Autonomous vehicles Environmental engineering Kalman filters Marine navigation Navigation Robotics Robots Unmanned surface vehicles Calm conditions Environmental monitoring Inertial units Inland waters Marine robotics Quaternion Sensor fusion Waterbodies Environmental management |
topic |
Autonomous Vehicles Environmental monitoring Marine robotics Navigation Quaternion Sensor fusion Autonomous vehicles Environmental engineering Kalman filters Marine navigation Navigation Robotics Robots Unmanned surface vehicles Calm conditions Environmental monitoring Inertial units Inland waters Marine robotics Quaternion Sensor fusion Waterbodies Environmental management |
description |
Environmental monitoring in inland waters is an important issue for adequate planning and management of this kind of territories. This paper shows the implementation of the concepts and strategies for a boat to follow a pre-established route through waypoints oriented to these water bodies. An extended Kalman filter is used to estimate orientation and position using the readings of an inertial unit fused with a magnetometer and GPS. The strategy shows to be valid in calm conditions, which is sufficient for the mission. © 2018 IEEE. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:12Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:12Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
2018 IEEE 2nd Colombian Conference on Robotics and Automation, CCRA 2018 |
dc.identifier.isbn.none.fl_str_mv |
9781538684641 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9202 |
dc.identifier.doi.none.fl_str_mv |
10.1109/CCRA.2018.8588131 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56682671200 55498635300 57193252278 22837432800 |
identifier_str_mv |
2018 IEEE 2nd Colombian Conference on Robotics and Automation, CCRA 2018 9781538684641 10.1109/CCRA.2018.8588131 Universidad Tecnológica de Bolívar Repositorio UTB 56682671200 55498635300 57193252278 22837432800 |
url |
https://hdl.handle.net/20.500.12585/9202 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
1 November 2018 through 3 November 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060985583&doi=10.1109%2fCCRA.2018.8588131&partnerID=40&md5=58ee2d1a4dc560503fa72ed65af141fc |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
2nd IEEE Colombian Conference on Robotics and Automation, CCRA 2018 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9202/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021800100626432 |
spelling |
Garcia L.Wightman P.Percybrooks W.Carrillo H.Quintero C.Paez J.Villa Ramírez, José LuisCabrera J.Yime E.2020-03-26T16:33:12Z2020-03-26T16:33:12Z20182018 IEEE 2nd Colombian Conference on Robotics and Automation, CCRA 20189781538684641https://hdl.handle.net/20.500.12585/920210.1109/CCRA.2018.8588131Universidad Tecnológica de BolívarRepositorio UTB56682671200554986353005719325227822837432800Environmental monitoring in inland waters is an important issue for adequate planning and management of this kind of territories. This paper shows the implementation of the concepts and strategies for a boat to follow a pre-established route through waypoints oriented to these water bodies. An extended Kalman filter is used to estimate orientation and position using the readings of an inertial unit fused with a magnetometer and GPS. The strategy shows to be valid in calm conditions, which is sufficient for the mission. © 2018 IEEE.ACKNOWLEDGMENT This work is supported by Universidad Tecnologica de Bolivar under contract FI1506T2001 ”Design and Implementation of an Autonomous Operation System for a boat”.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060985583&doi=10.1109%2fCCRA.2018.8588131&partnerID=40&md5=58ee2d1a4dc560503fa72ed65af141fc2nd IEEE Colombian Conference on Robotics and Automation, CCRA 2018Implementation of an Unmanned Surface Vehicle for Environmental Monitoring Applicationsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAutonomous VehiclesEnvironmental monitoringMarine roboticsNavigationQuaternionSensor fusionAutonomous vehiclesEnvironmental engineeringKalman filtersMarine navigationNavigationRoboticsRobotsUnmanned surface vehiclesCalm conditionsEnvironmental monitoringInertial unitsInland watersMarine roboticsQuaternionSensor fusionWaterbodiesEnvironmental management1 November 2018 through 3 November 2018Villa, J.L., Paez, J., Quintero, C., Yime, E., Cabrera, J., Design and control of an unmanned surface vehicle for environmental monitoring applications 2016 IEEE Colombian Conference on Robotics and Automation (CCRA), pp. 1-5. , Sept 2016Fossen, T., (2011) Handbook of Marine Craft Hydrodynamics and Motion Control, , WileyFornai, F., Ferri, G., Manzi, A., Ciuchi, F., Bartaloni, F., Laschi, C., An Autonomous Water Monitoring and Sampling System for Small-sized ASVs, 42 (1), pp. 5-12Hitz, G., Pomerleau, F., Garneau, M.-E., Pradalier, C., Posch, T., Pernthaler, J., Siegwart, R., Autonomous inland water monitoring: Design and application of a surface vessel , 19 (1), pp. 62-72Ferri, G., Manzi, A., Fornai, F., Ciuchi, F., Laschi, C., The HydroNet ASV, a small-sized autonomous catamaran for real-Time monitoring of water quality: From design to missions at sea , 40 (3), pp. 710-726Liu, D., Luan, X., Zhang, F., Jin, J., Guo, J., Zheng, R., An USVbased laser fluorosensor for oil spill detection Proceedings of the International Conference on Sensing Technology, ICST IEEE Computer SocietyPinto, E., Marques, F., Mendonca, R., Lourenco, A., Santana, P., Barata, J., An autonomous surface-Aerial marsupial robotic team for riverine environmental monitoring: Benefiting from coordinated aerial, underwater, and surface level perception 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014, pp. 443-450. , Institute of Electrical and Electronics Engineers IncBennett, A., Barrett, D., Preston, V., Woo, J., Chandra, S., Diggins, D., Chapman, R., Kerr, I., Autonomous vehicles for remote sample collection: Enabling marine research MTS/IEEE OCEANS 2015-Genova: Discovering Sustainable Ocean Energy for A New World, Institute of Electrical and Electronics Engineers IncKemna, S., Caron, D., Sukhatme, G., Constraint-induced formation switching for adaptive environmental sampling MTS/IEEE OCEANS 2015-Genova: Discovering Sustainable Ocean Energy for A New World, Institute of Electrical and Electronics Engineers IncVelez, F., Nadziejko, A., Christensen, A., Oliveira, S., Rodrigues, T., Costa, V., Duarte, M., Gomes, J., Wireless sensor and networking technologies for swarms of aquatic surface drones IEEE Vehicular Technology Conference, Institute of Electrical and Electronics Engineers IncManjanna, S., Hansen, J., Li, A., Rekleitis, I., Dudek, G., Collaborative sampling using heterogeneous marine robots driven by visual cues (2017) Proceedings-2017 14th Conference on Computer and Robot Vision, CRV, pp. 87-94. , 2018-January, Institute of Electrical and Electronics Engineers IncMatos, J., Postolache, O., IoT enabled aquatic drone for environmental monitoring Proceedings of the 2016 International Conference and Exposition on Electrical and Power Engineering, EPE 2016, pp. 598-603. , G. M. N. B.-C. Haba C.-G., Ivanov O., ed, Institute of Electrical and Electronics Engineers IncSeo, S., Chung, W., Cho, E., Real time detecting of harmful dinoflagellate cochlodinium polykrikoides using unmanned surface vehicle in dynamic environments , 35 (3), pp. 563-570Fitzpatrick, P., Lau, Y., Moorhead, R., Skarke, A., Merritt, D., Kreider, K., Brown, C., Leonardi, A., A Review of the 2014 Gulf of Mexico Wave Glider Field Program, 49 (3), pp. 64-71Zaghi, S., Dubbioso, G., Broglia, R., Muscari, R., Hydrodynamic characterization of USV vessels with innovative SWATH configuration for coastal monitoring and low environmental impact Transportation Research Procedia, 14, pp. 1562-1570. , Elsevier B.VHitz, G., Gotovos, A., Pomerleau, F., Garneau, M.-E., Pradalier, C., Krause, A., Siegwart, R., Fully autonomous focused exploration for robotic environmental monitoring Proceedings-IEEE International Conference on Robotics and Automation, pp. 2658-2664. , Institute of Electrical and Electronics Engineers IncMa, K.-C., Liu, L., Heidarsson, H., Sukhatme, G., Data-driven Learning and Planning for Environmental Sampling, 35 (5), pp. 643-661Li, T., Xia, M., Chen, J., Gao, S., De Silva, C., A hexagonal grid-based sampling planner for aquatic environmental monitoring using unmanned surface vehicles 2017 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2017, 2017-January, pp. 3683-3688. , Institute of Electrical and Electronics Engineers IncArzamendia, M., Espartza, I., Reina, D., Toral, S., Gregor, D., Comparison of Eulerian and Hamiltonian Circuits for Evolutionary-based Path Planning of An Autonomous Surface Vehicle for Monitoring Ypacarai Lake, pp. 1-13Rev.1 (2014) MotionTracking Device, 1. , InvenSense IncU-blo, U-blox M8 Concurrent GNSS ModulesCavallo, A., Cirillo, A., Cirillo, P., De Maria, G., Falco, P., Natale, C., Pirozzi, S., Experimental comparison of sensor fusion algorithms for attitude estimation (2014) IFAC Proceedings Volumes, 47 (3), pp. 7585-7591Yang, Y., Zhou, J., Loffeld, O., Quaternion-based kalman filtering on ins/GPS 2012 15th International Conference on Information Fusion, pp. 511-518. , July 2012Finn, A., Scheding, S., (2010) Developments and Challenges for Autonomous Unmanned Vehicles: A Compendium. Intelligent Systems Reference Library, , Springer Berlin Heidelberghttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9202/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9202oai:repositorio.utb.edu.co:20.500.12585/92022023-04-21 15:42:55.07Repositorio Institucional UTBrepositorioutb@utb.edu.co |