Automated corneal endothelium image segmentation in the presence of cornea guttata via convolutional neural networks
Automated cell counting in in-vivo specular microscopy images is challenging, especially in situations where single-cell segmentation methods fail due to pathological conditions. This work aims to obtain reliable cell segmentation from specular microscopy images of both healthy and pathological corn...
- Autores:
-
Sierra, Juan S.
Pineda, Jesus
Viteri, Eduardo
Rueda, Daniela
Tibaduiza, Beatriz
Berrospi, Rúben D.
Tello, Alejandro
Galvis, Virgilio
Volpe, Giovanni
Millán, María S.
Romero, Lenny A.
Marrugo Hernández, Andrés Guillermo
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9561
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9561
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11511/115110H/Automated-corneal-endothelium-image-segmentation-in-the-presence-of-cornea/10.1117/12.2569258.short?SSO=1
- Palabra clave:
- Cell segmentation
Ophthalmic imaging
Diagnosis through images
Image processing
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb