Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
In this paper is proposed a master-slave method for optimal location and sizing of distributed generators (DGs) in direct-current (DC) networks. In the master stage is used the genetic algorithm of Chu & Beasley (GA) for the location of DGs. In the slave stage three different continuous techniqu...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9184
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9184
- Palabra clave:
- Direct-current networks
Distributed generation
Genetic algorithm
Metaheuristic optimization
Optimal power flow
Particle swarm optimization
DC power transmission
Distributed power generation
Economic and social effects
Electric load flow
Genetic algorithms
Location
Continuous genetic algorithms
Direct current
Distributed generator (DGs)
Distributed generators
Meta-heuristic optimizations
Optimal power flows
Particle swarm optimization algorithm
Successive approximations
Particle swarm optimization (PSO)
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_0ea74c19d9da288002a7a9b939268464 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9184 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks |
title |
Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks |
spellingShingle |
Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks Direct-current networks Distributed generation Genetic algorithm Metaheuristic optimization Optimal power flow Particle swarm optimization DC power transmission Distributed power generation Economic and social effects Electric load flow Genetic algorithms Location Continuous genetic algorithms Direct current Distributed generator (DGs) Distributed generators Meta-heuristic optimizations Optimal power flows Particle swarm optimization algorithm Successive approximations Particle swarm optimization (PSO) |
title_short |
Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks |
title_full |
Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks |
title_fullStr |
Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks |
title_full_unstemmed |
Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks |
title_sort |
Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks |
dc.contributor.editor.none.fl_str_mv |
Figueroa-Garcia J.C. Duarte-Gonzalez M. Jaramillo-Isaza S. Orjuela-Canon A.D. Diaz-Gutierrez Y. |
dc.subject.keywords.none.fl_str_mv |
Direct-current networks Distributed generation Genetic algorithm Metaheuristic optimization Optimal power flow Particle swarm optimization DC power transmission Distributed power generation Economic and social effects Electric load flow Genetic algorithms Location Continuous genetic algorithms Direct current Distributed generator (DGs) Distributed generators Meta-heuristic optimizations Optimal power flows Particle swarm optimization algorithm Successive approximations Particle swarm optimization (PSO) |
topic |
Direct-current networks Distributed generation Genetic algorithm Metaheuristic optimization Optimal power flow Particle swarm optimization DC power transmission Distributed power generation Economic and social effects Electric load flow Genetic algorithms Location Continuous genetic algorithms Direct current Distributed generator (DGs) Distributed generators Meta-heuristic optimizations Optimal power flows Particle swarm optimization algorithm Successive approximations Particle swarm optimization (PSO) |
description |
In this paper is proposed a master-slave method for optimal location and sizing of distributed generators (DGs) in direct-current (DC) networks. In the master stage is used the genetic algorithm of Chu & Beasley (GA) for the location of DGs. In the slave stage three different continuous techniques are used: the Continuous genetic algorithm (CGA), the Black Hole optimization method (BH) and the particle swarm optimization (PSO) algorithm, in order to solve the problem of sizing. All of those techniques are combined to find the hybrid method that provides the best results in terms of power losses reduction and processing times. The reduction of the total power losses on the electrical network associated to the transport of energy is used as objective function, by also including a penalty to limit the power injected by the DGs on the grid, and considering all constraints associated to the DC grids. To verify the performance of the different hybrid methods studied, two test systems with 10 and 21 buses are implemented in MATLAB by considering the installation of three distributed generators. To solve the power flow equations, the slave stage uses successive approximations. The results obtained shown that the proposed methodology GA-BH provides the best trade-off between speed and power losses independent of the total power provided by the DGs and the network size. © 2019, Springer Nature Switzerland AG. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:09Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:09Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Communications in Computer and Information Science; Vol. 1052, pp. 214-225 |
dc.identifier.isbn.none.fl_str_mv |
9783030310189 |
dc.identifier.issn.none.fl_str_mv |
18650929 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9184 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-030-31019-6_19 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
55791991200 57212009687 56919564100 22836502400 |
identifier_str_mv |
Communications in Computer and Information Science; Vol. 1052, pp. 214-225 9783030310189 18650929 10.1007/978-3-030-31019-6_19 Universidad Tecnológica de Bolívar Repositorio UTB 55791991200 57212009687 56919564100 22836502400 |
url |
https://hdl.handle.net/20.500.12585/9184 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
16 October 2019 through 18 October 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075643487&doi=10.1007%2f978-3-030-31019-6_19&partnerID=40&md5=552715280abdfa8f09e4602ff1f9016c |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
6th Workshop on Engineering Applications, WEA 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9184/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021621629845504 |
spelling |
Figueroa-Garcia J.C.Duarte-Gonzalez M.Jaramillo-Isaza S.Orjuela-Canon A.D.Diaz-Gutierrez Y.Grisales-Noreña L.F.Garzón Rivera O.D.Montoya, Oscar DaniloRamos-Paja C.A.2020-03-26T16:33:09Z2020-03-26T16:33:09Z2019Communications in Computer and Information Science; Vol. 1052, pp. 214-225978303031018918650929https://hdl.handle.net/20.500.12585/918410.1007/978-3-030-31019-6_19Universidad Tecnológica de BolívarRepositorio UTB55791991200572120096875691956410022836502400In this paper is proposed a master-slave method for optimal location and sizing of distributed generators (DGs) in direct-current (DC) networks. In the master stage is used the genetic algorithm of Chu & Beasley (GA) for the location of DGs. In the slave stage three different continuous techniques are used: the Continuous genetic algorithm (CGA), the Black Hole optimization method (BH) and the particle swarm optimization (PSO) algorithm, in order to solve the problem of sizing. All of those techniques are combined to find the hybrid method that provides the best results in terms of power losses reduction and processing times. The reduction of the total power losses on the electrical network associated to the transport of energy is used as objective function, by also including a penalty to limit the power injected by the DGs on the grid, and considering all constraints associated to the DC grids. To verify the performance of the different hybrid methods studied, two test systems with 10 and 21 buses are implemented in MATLAB by considering the installation of three distributed generators. To solve the power flow equations, the slave stage uses successive approximations. The results obtained shown that the proposed methodology GA-BH provides the best trade-off between speed and power losses independent of the total power provided by the DGs and the network size. © 2019, Springer Nature Switzerland AG.Recurso electrónicoapplication/pdfengSpringerhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075643487&doi=10.1007%2f978-3-030-31019-6_19&partnerID=40&md5=552715280abdfa8f09e4602ff1f9016c6th Workshop on Engineering Applications, WEA 2019Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networksinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fDirect-current networksDistributed generationGenetic algorithmMetaheuristic optimizationOptimal power flowParticle swarm optimizationDC power transmissionDistributed power generationEconomic and social effectsElectric load flowGenetic algorithmsLocationContinuous genetic algorithmsDirect currentDistributed generator (DGs)Distributed generatorsMeta-heuristic optimizationsOptimal power flowsParticle swarm optimization algorithmSuccessive approximationsParticle swarm optimization (PSO)16 October 2019 through 18 October 2019Montoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Noreña, L., Power flow analysis in DC grids: Two alternative numerical methods (2019) IEEE Trans. Circuits Syst. II, 1Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Storage, 21, pp. 1-8Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506Montoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electr. Power Syst. Res., 169, pp. 18-23Montoya, O.D., Grisales-Noreña, L.F., Optimal power dispatch of DGs in DC power grids: A hybrid Gauss-Seidel-Genetic-Algorithm methodology for solving the OPF problem (2018) WSEAS Trans. Power Syst., 13, pp. 335-346Velasquez, O., Giraldo, O.M., Arevalo, V.G., Noreña, L.G., Optimal power flow in direct-current power grids via black hole optimization (2019) Adv. Electr. Electron. Eng., 17 (1), pp. 24-32Wang, P., Zhang, L., Xu, D., Optimal sizing of distributed generations in DC microgrids with lifespan estimated model of batteries (2018) 2018 21St International Conference on Electrical Machines and Systems (ICEMS), pp. 2045-2049. , pp., OctoberGrisales Noreña, L.F., Restrepo Cuestas, B.J., Jaramillo Ramirez, F.E., Ubi-cación y dimensionamiento de generación distribuida: Una revisión (2017) Ciencia E Ingeniería Neogranadina, 27 (2), pp. 157-176. , https://revistas.unimilitar.edu.co/index.php/rcin/article/view/2344Grisales-Noreña, L.F., Gonzalez Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), p. 1018Mohamed Imran, A., Kowsalya, M., Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization (2014) Swarm Evol. Comput., 15, pp. 58-65Mahmoud Pesaran, H.A., Huy, P.D., Ramachandaramurthy, V.K., A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms (2017) Renew. Sustain. Energy Rev., 75, pp. 293-312Grisales, L.F., Grajales, A., Montoya, O.D., Hincapié, R.A., Granada, M., Optimal location and sizing of distributed generators using a hybrid methodology and considering different technologies (2015) 2015 IEEE 6Th Latin American Symposium on Circuits Systems (LASCAS), pp. 1-4. , pp., FebruaryChu, P., Beasley, J., A genetic algorithm for the generalised assignment problem (1997) Comput. Oper. Res., 24 (1), pp. 17-23Kennedy, J., Eberhart, R., Particle swarm optimization (1995) Proceedings of ICNN 1995-International Conference on Neural Networks, 4, pp. 1942-1948. , vol., pp., NovemberBouchekara, H., Optimal power flow using black-hole-based optimization approach (2014) Appl. Soft Comput., 24, pp. 879-888Montoya, O.D., Grisales-Norena, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381Montoya, O.D., On linear analysis of the power flow equations for DC and AC grids with CPLs (2019) IEEE Trans. Circuits Syst. II, p. 1http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9184/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9184oai:repositorio.utb.edu.co:20.500.12585/91842023-05-26 10:10:42.604Repositorio Institucional UTBrepositorioutb@utb.edu.co |