Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks

In this paper is proposed a master-slave method for optimal location and sizing of distributed generators (DGs) in direct-current (DC) networks. In the master stage is used the genetic algorithm of Chu & Beasley (GA) for the location of DGs. In the slave stage three different continuous techniqu...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9184
Acceso en línea:
https://hdl.handle.net/20.500.12585/9184
Palabra clave:
Direct-current networks
Distributed generation
Genetic algorithm
Metaheuristic optimization
Optimal power flow
Particle swarm optimization
DC power transmission
Distributed power generation
Economic and social effects
Electric load flow
Genetic algorithms
Location
Continuous genetic algorithms
Direct current
Distributed generator (DGs)
Distributed generators
Meta-heuristic optimizations
Optimal power flows
Particle swarm optimization algorithm
Successive approximations
Particle swarm optimization (PSO)
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_0ea74c19d9da288002a7a9b939268464
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9184
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
title Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
spellingShingle Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
Direct-current networks
Distributed generation
Genetic algorithm
Metaheuristic optimization
Optimal power flow
Particle swarm optimization
DC power transmission
Distributed power generation
Economic and social effects
Electric load flow
Genetic algorithms
Location
Continuous genetic algorithms
Direct current
Distributed generator (DGs)
Distributed generators
Meta-heuristic optimizations
Optimal power flows
Particle swarm optimization algorithm
Successive approximations
Particle swarm optimization (PSO)
title_short Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
title_full Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
title_fullStr Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
title_full_unstemmed Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
title_sort Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
dc.contributor.editor.none.fl_str_mv Figueroa-Garcia J.C.
Duarte-Gonzalez M.
Jaramillo-Isaza S.
Orjuela-Canon A.D.
Diaz-Gutierrez Y.
dc.subject.keywords.none.fl_str_mv Direct-current networks
Distributed generation
Genetic algorithm
Metaheuristic optimization
Optimal power flow
Particle swarm optimization
DC power transmission
Distributed power generation
Economic and social effects
Electric load flow
Genetic algorithms
Location
Continuous genetic algorithms
Direct current
Distributed generator (DGs)
Distributed generators
Meta-heuristic optimizations
Optimal power flows
Particle swarm optimization algorithm
Successive approximations
Particle swarm optimization (PSO)
topic Direct-current networks
Distributed generation
Genetic algorithm
Metaheuristic optimization
Optimal power flow
Particle swarm optimization
DC power transmission
Distributed power generation
Economic and social effects
Electric load flow
Genetic algorithms
Location
Continuous genetic algorithms
Direct current
Distributed generator (DGs)
Distributed generators
Meta-heuristic optimizations
Optimal power flows
Particle swarm optimization algorithm
Successive approximations
Particle swarm optimization (PSO)
description In this paper is proposed a master-slave method for optimal location and sizing of distributed generators (DGs) in direct-current (DC) networks. In the master stage is used the genetic algorithm of Chu & Beasley (GA) for the location of DGs. In the slave stage three different continuous techniques are used: the Continuous genetic algorithm (CGA), the Black Hole optimization method (BH) and the particle swarm optimization (PSO) algorithm, in order to solve the problem of sizing. All of those techniques are combined to find the hybrid method that provides the best results in terms of power losses reduction and processing times. The reduction of the total power losses on the electrical network associated to the transport of energy is used as objective function, by also including a penalty to limit the power injected by the DGs on the grid, and considering all constraints associated to the DC grids. To verify the performance of the different hybrid methods studied, two test systems with 10 and 21 buses are implemented in MATLAB by considering the installation of three distributed generators. To solve the power flow equations, the slave stage uses successive approximations. The results obtained shown that the proposed methodology GA-BH provides the best trade-off between speed and power losses independent of the total power provided by the DGs and the network size. © 2019, Springer Nature Switzerland AG.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:09Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:09Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Communications in Computer and Information Science; Vol. 1052, pp. 214-225
dc.identifier.isbn.none.fl_str_mv 9783030310189
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9184
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-31019-6_19
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 55791991200
57212009687
56919564100
22836502400
identifier_str_mv Communications in Computer and Information Science; Vol. 1052, pp. 214-225
9783030310189
18650929
10.1007/978-3-030-31019-6_19
Universidad Tecnológica de Bolívar
Repositorio UTB
55791991200
57212009687
56919564100
22836502400
url https://hdl.handle.net/20.500.12585/9184
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 16 October 2019 through 18 October 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075643487&doi=10.1007%2f978-3-030-31019-6_19&partnerID=40&md5=552715280abdfa8f09e4602ff1f9016c
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 6th Workshop on Engineering Applications, WEA 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9184/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021621629845504
spelling Figueroa-Garcia J.C.Duarte-Gonzalez M.Jaramillo-Isaza S.Orjuela-Canon A.D.Diaz-Gutierrez Y.Grisales-Noreña L.F.Garzón Rivera O.D.Montoya, Oscar DaniloRamos-Paja C.A.2020-03-26T16:33:09Z2020-03-26T16:33:09Z2019Communications in Computer and Information Science; Vol. 1052, pp. 214-225978303031018918650929https://hdl.handle.net/20.500.12585/918410.1007/978-3-030-31019-6_19Universidad Tecnológica de BolívarRepositorio UTB55791991200572120096875691956410022836502400In this paper is proposed a master-slave method for optimal location and sizing of distributed generators (DGs) in direct-current (DC) networks. In the master stage is used the genetic algorithm of Chu & Beasley (GA) for the location of DGs. In the slave stage three different continuous techniques are used: the Continuous genetic algorithm (CGA), the Black Hole optimization method (BH) and the particle swarm optimization (PSO) algorithm, in order to solve the problem of sizing. All of those techniques are combined to find the hybrid method that provides the best results in terms of power losses reduction and processing times. The reduction of the total power losses on the electrical network associated to the transport of energy is used as objective function, by also including a penalty to limit the power injected by the DGs on the grid, and considering all constraints associated to the DC grids. To verify the performance of the different hybrid methods studied, two test systems with 10 and 21 buses are implemented in MATLAB by considering the installation of three distributed generators. To solve the power flow equations, the slave stage uses successive approximations. The results obtained shown that the proposed methodology GA-BH provides the best trade-off between speed and power losses independent of the total power provided by the DGs and the network size. © 2019, Springer Nature Switzerland AG.Recurso electrónicoapplication/pdfengSpringerhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075643487&doi=10.1007%2f978-3-030-31019-6_19&partnerID=40&md5=552715280abdfa8f09e4602ff1f9016c6th Workshop on Engineering Applications, WEA 2019Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networksinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fDirect-current networksDistributed generationGenetic algorithmMetaheuristic optimizationOptimal power flowParticle swarm optimizationDC power transmissionDistributed power generationEconomic and social effectsElectric load flowGenetic algorithmsLocationContinuous genetic algorithmsDirect currentDistributed generator (DGs)Distributed generatorsMeta-heuristic optimizationsOptimal power flowsParticle swarm optimization algorithmSuccessive approximationsParticle swarm optimization (PSO)16 October 2019 through 18 October 2019Montoya, O.D., Garrido, V.M., Gil-González, W., Grisales-Noreña, L., Power flow analysis in DC grids: Two alternative numerical methods (2019) IEEE Trans. Circuits Syst. II, 1Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Storage, 21, pp. 1-8Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506Montoya, O.D., Gil-González, W., Garces, A., Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electr. Power Syst. Res., 169, pp. 18-23Montoya, O.D., Grisales-Noreña, L.F., Optimal power dispatch of DGs in DC power grids: A hybrid Gauss-Seidel-Genetic-Algorithm methodology for solving the OPF problem (2018) WSEAS Trans. Power Syst., 13, pp. 335-346Velasquez, O., Giraldo, O.M., Arevalo, V.G., Noreña, L.G., Optimal power flow in direct-current power grids via black hole optimization (2019) Adv. Electr. Electron. Eng., 17 (1), pp. 24-32Wang, P., Zhang, L., Xu, D., Optimal sizing of distributed generations in DC microgrids with lifespan estimated model of batteries (2018) 2018 21St International Conference on Electrical Machines and Systems (ICEMS), pp. 2045-2049. , pp., OctoberGrisales Noreña, L.F., Restrepo Cuestas, B.J., Jaramillo Ramirez, F.E., Ubi-cación y dimensionamiento de generación distribuida: Una revisión (2017) Ciencia E Ingeniería Neogranadina, 27 (2), pp. 157-176. , https://revistas.unimilitar.edu.co/index.php/rcin/article/view/2344Grisales-Noreña, L.F., Gonzalez Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), p. 1018Mohamed Imran, A., Kowsalya, M., Optimal size and siting of multiple distributed generators in distribution system using bacterial foraging optimization (2014) Swarm Evol. Comput., 15, pp. 58-65Mahmoud Pesaran, H.A., Huy, P.D., Ramachandaramurthy, V.K., A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms (2017) Renew. Sustain. Energy Rev., 75, pp. 293-312Grisales, L.F., Grajales, A., Montoya, O.D., Hincapié, R.A., Granada, M., Optimal location and sizing of distributed generators using a hybrid methodology and considering different technologies (2015) 2015 IEEE 6Th Latin American Symposium on Circuits Systems (LASCAS), pp. 1-4. , pp., FebruaryChu, P., Beasley, J., A genetic algorithm for the generalised assignment problem (1997) Comput. Oper. Res., 24 (1), pp. 17-23Kennedy, J., Eberhart, R., Particle swarm optimization (1995) Proceedings of ICNN 1995-International Conference on Neural Networks, 4, pp. 1942-1948. , vol., pp., NovemberBouchekara, H., Optimal power flow using black-hole-based optimization approach (2014) Appl. Soft Comput., 24, pp. 879-888Montoya, O.D., Grisales-Norena, L.F., González-Montoya, D., Ramos-Paja, C., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381Montoya, O.D., On linear analysis of the power flow equations for DC and AC grids with CPLs (2019) IEEE Trans. Circuits Syst. II, p. 1http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9184/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9184oai:repositorio.utb.edu.co:20.500.12585/91842023-05-26 10:10:42.604Repositorio Institucional UTBrepositorioutb@utb.edu.co