Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks
In this paper is proposed a master-slave method for optimal location and sizing of distributed generators (DGs) in direct-current (DC) networks. In the master stage is used the genetic algorithm of Chu & Beasley (GA) for the location of DGs. In the slave stage three different continuous techniqu...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9184
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9184
- Palabra clave:
- Direct-current networks
Distributed generation
Genetic algorithm
Metaheuristic optimization
Optimal power flow
Particle swarm optimization
DC power transmission
Distributed power generation
Economic and social effects
Electric load flow
Genetic algorithms
Location
Continuous genetic algorithms
Direct current
Distributed generator (DGs)
Distributed generators
Meta-heuristic optimizations
Optimal power flows
Particle swarm optimization algorithm
Successive approximations
Particle swarm optimization (PSO)
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/