Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks

Controlled low-strength materials (CLSMs) had been widely applied to excavation and backfill in civil engineering. However, the engineering properties of CLSM in these embankments vary dramatically due to different contents involved. This study is proposed to employ the ANSYS software and two differ...

Full description

Autores:
Tipo de recurso:
Book
Fecha de publicación:
2017
Institución:
Universidad de Bogotá Jorge Tadeo Lozano
Repositorio:
Expeditio: repositorio UTadeo
Idioma:
eng
OAI Identifier:
oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16830
Acceso en línea:
https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/parameter-recognition-of-engineering-constants-of-clsms-in-civil-engineering-using-artificial-neural
http://hdl.handle.net/20.500.12010/16830
Palabra clave:
Ingeniería civil
ingeniería de CLSM
Redes neuronales artificiales
Reconocimiento de parámetros
Rights
License
Abierto (Texto Completo)
id UTADEO2_3438f48fbd2de252318e0435c64e760c
oai_identifier_str oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16830
network_acronym_str UTADEO2
network_name_str Expeditio: repositorio UTadeo
repository_id_str
dc.title.spa.fl_str_mv Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks
title Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks
spellingShingle Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks
Ingeniería civil
ingeniería de CLSM
Redes neuronales artificiales
Reconocimiento de parámetros
title_short Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks
title_full Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks
title_fullStr Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks
title_full_unstemmed Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks
title_sort Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks
dc.subject.spa.fl_str_mv Ingeniería civil
topic Ingeniería civil
ingeniería de CLSM
Redes neuronales artificiales
Reconocimiento de parámetros
dc.subject.lemb.spa.fl_str_mv ingeniería de CLSM
Redes neuronales artificiales
Reconocimiento de parámetros
description Controlled low-strength materials (CLSMs) had been widely applied to excavation and backfill in civil engineering. However, the engineering properties of CLSM in these embankments vary dramatically due to different contents involved. This study is proposed to employ the ANSYS software and two different artificial neural networks (ANNs), that is, back-propagation artificial neural network (BPANN) and radial basis function neural network (RBFNN), to determine the engineering properties of CLSM by considering an inverse problem in which elastic modulus and the Poisson’s ratio can be identified from inputting displacements and stress measurements. The PLANE42 element of ANSYS was first used to investigate a 2D problem of a retaining wall with embankment, with E = 0.02~3 GPa, ν= 0.1~0.4 to obtain totally 270 sampling data for two earth pressures and two top surface settlements of embankment. These data are randomly divided into training and testing set for ANNs. Practical cases of three kinds of backfilled materials, soil, and two kinds of CLSMs (CLSM-B80/30% and CLSM-B130/30%) will be used to check the validity of ANN prediction results. Results showed that maximal errors of CLSM elastic parameters identified by well-trained ANNs can be within 6%.
publishDate 2017
dc.date.created.none.fl_str_mv 2017-12-20
dc.date.accessioned.none.fl_str_mv 2021-01-21T18:01:53Z
dc.date.available.none.fl_str_mv 2021-01-21T18:01:53Z
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
format http://purl.org/coar/resource_type/c_2f33
dc.identifier.other.none.fl_str_mv https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/parameter-recognition-of-engineering-constants-of-clsms-in-civil-engineering-using-artificial-neural
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12010/16830
dc.identifier.doi.none.fl_str_mv 10.5772/intechopen.71538
url https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/parameter-recognition-of-engineering-constants-of-clsms-in-civil-engineering-using-artificial-neural
http://hdl.handle.net/20.500.12010/16830
identifier_str_mv 10.5772/intechopen.71538
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Li-Jeng Huang (December 20th 2017). Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.71538.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
rights_invalid_str_mv Abierto (Texto Completo)
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 23 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IntechOpen
institution Universidad de Bogotá Jorge Tadeo Lozano
bitstream.url.fl_str_mv https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16830/1/Parameter%20Recognition%20of%20Engineering%20Constants%20of_81.pdf
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16830/3/Parameter%20Recognition%20of%20Engineering%20Constants%20of_81.pdf.jpg
https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16830/2/license.txt
bitstream.checksum.fl_str_mv 8a5ba09498c97490b3fb2931f7539900
f94e49470bc040d7eddeeca6b23f4786
abceeb1c943c50d3343516f9dbfc110f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Universidad Jorge Tadeo Lozano
repository.mail.fl_str_mv expeditio@utadeo.edu.co
_version_ 1814213807154659328
spelling 2021-01-21T18:01:53Z2021-01-21T18:01:53Z2017-12-20https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/parameter-recognition-of-engineering-constants-of-clsms-in-civil-engineering-using-artificial-neuralhttp://hdl.handle.net/20.500.12010/1683010.5772/intechopen.7153823 páginasapplication/pdfengIntechOpenIngeniería civilingeniería de CLSMRedes neuronales artificialesReconocimiento de parámetrosParameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural NetworksAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc-nd/4.0/legalcodehttp://purl.org/coar/access_right/c_abf2Li-Jeng Huang (December 20th 2017). Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks, Advanced Applications for Artificial Neural Networks, Adel El-Shahat, IntechOpen, DOI: 10.5772/intechopen.71538.Controlled low-strength materials (CLSMs) had been widely applied to excavation and backfill in civil engineering. However, the engineering properties of CLSM in these embankments vary dramatically due to different contents involved. This study is proposed to employ the ANSYS software and two different artificial neural networks (ANNs), that is, back-propagation artificial neural network (BPANN) and radial basis function neural network (RBFNN), to determine the engineering properties of CLSM by considering an inverse problem in which elastic modulus and the Poisson’s ratio can be identified from inputting displacements and stress measurements. The PLANE42 element of ANSYS was first used to investigate a 2D problem of a retaining wall with embankment, with E = 0.02~3 GPa, ν= 0.1~0.4 to obtain totally 270 sampling data for two earth pressures and two top surface settlements of embankment. These data are randomly divided into training and testing set for ANNs. Practical cases of three kinds of backfilled materials, soil, and two kinds of CLSMs (CLSM-B80/30% and CLSM-B130/30%) will be used to check the validity of ANN prediction results. Results showed that maximal errors of CLSM elastic parameters identified by well-trained ANNs can be within 6%.http://purl.org/coar/resource_type/c_2f33Jeng Huang, Li.ORIGINALParameter Recognition of Engineering Constants of_81.pdfParameter Recognition of Engineering Constants of_81.pdfVer documentoapplication/pdf1052247https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16830/1/Parameter%20Recognition%20of%20Engineering%20Constants%20of_81.pdf8a5ba09498c97490b3fb2931f7539900MD51open accessTHUMBNAILParameter Recognition of Engineering Constants of_81.pdf.jpgParameter Recognition of Engineering Constants of_81.pdf.jpgIM Thumbnailimage/jpeg11607https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16830/3/Parameter%20Recognition%20of%20Engineering%20Constants%20of_81.pdf.jpgf94e49470bc040d7eddeeca6b23f4786MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-82938https://expeditiorepositorio.utadeo.edu.co/bitstream/20.500.12010/16830/2/license.txtabceeb1c943c50d3343516f9dbfc110fMD52open access20.500.12010/16830oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/168302021-01-31 18:00:10.925open accessRepositorio Institucional - Universidad Jorge Tadeo Lozanoexpeditio@utadeo.edu.coQXV0b3Jpem8gYWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBVbml2ZXJzaWRhZCBkZSBCb2dvdMOhIEpvcmdlIFRhZGVvIExvemFubyBwYXJhIHF1ZSBjb24gZmluZXMgYWNhZMOpbWljb3MsIHByZXNlcnZlLCBjb25zZXJ2ZSwgb3JnYW5pY2UsIGVkaXRlIHkgbW9kaWZpcXVlIHRlY25vbMOzZ2ljYW1lbnRlIGVsIGRvY3VtZW50byBhbnRlcmlvcm1lbnRlIGNhcmdhZG8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBFeHBlZGl0aW8KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYSB1c3VhcmlvcyBpbnRlcm5vcyB5IGV4dGVybm9zIGRlIGxhIEluc3RpdHVjacOzbiBhIGNvbnN1bHRhciB5IHJlcHJvZHVjaXIgZWwgY29udGVuaWRvIGRlbCBkb2N1bWVudG8gcGFyYSBmaW5lcyBhY2Fkw6ltaWNvcyBudW5jYSBwYXJhIHVzb3MgY29tZXJjaWFsZXMsIGN1YW5kbyBtZWRpYW50ZSBsYSBjb3JyZXNwb25kaWVudGUgY2l0YSBiaWJsaW9ncsOhZmljYSBzZSBsZSBkZSBjcsOpZGl0byBhIGxhIG9icmEgeSBzdShzKSBhdXRvcihzKS4KCkV4Y2VwdHVhbmRvIHF1ZSBlbCBkb2N1bWVudG8gc2VhIGNvbmZpZGVuY2lhbCwgYXV0b3Jpem8gYXBsaWNhciBsYSBsaWNlbmNpYSBkZWwgZXN0w6FuZGFyIGludGVybmFjaW9uYWwgQ3JlYXRpdmUgQ29tbW9ucyAoQXR0cmlidXRpb24tTm9uQ29tbWVyY2lhbC1Ob0Rlcml2YXRpdmVzIDQuMCBJbnRlcm5hdGlvbmFsKSBxdWUgaW5kaWNhIHF1ZSBjdWFscXVpZXIgcGVyc29uYSBwdWVkZSB1c2FyIGxhIG9icmEgZGFuZG8gY3LDqWRpdG8gYWwgYXV0b3IsIHNpbiBwb2RlciBjb21lcmNpYXIgY29uIGxhIG9icmEgeSBzaW4gZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMuCgpFbCAobG9zKSBhdXRvcihlcykgY2VydGlmaWNhKG4pIHF1ZSBlbCBkb2N1bWVudG8gbm8gaW5mcmluZ2UgbmkgYXRlbnRhIGNvbnRyYSBkZXJlY2hvcyBpbmR1c3RyaWFsZXMsIHBhdHJpbW9uaWFsZXMsIGludGVsZWN0dWFsZXMsIG1vcmFsZXMgbyBjdWFscXVpZXIgb3RybyBkZSB0ZXJjZXJvcywgYXPDrSBtaXNtbyBkZWNsYXJhbiBxdWUgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIHNlIGVuY3VlbnRyYSBsaWJyZSBkZSB0b2RhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlbCB0cmFiYWpvIGRlIGdyYWRvIHkvbyB0ZXNpcyBlbiBjYWxpZGFkIGRlIGFjY2VzbyBhYmllcnRvIHBvciBjdWFscXVpZXIgbWVkaW8uCgpFbiBjdW1wbGltaWVudG8gY29uIGxvIGRpc3B1ZXN0byBlbiBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZXNwZWNpYWxtZW50ZSBlbiB2aXJ0dWQgZGUgbG8gZGlzcHVlc3RvIGVuIGVsIEFydMOtY3VsbyAxMCBkZWwgRGVjcmV0byAxMzc3IGRlIDIwMTMsIGF1dG9yaXpvIGEgbGEgVW5pdmVyc2lkYWQgSm9yZ2UgVGFkZW8gTG96YW5vIGEgcHJvY2VkZXIgY29uIGVsIHRyYXRhbWllbnRvIGRlIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgYWNhZMOpbWljb3MsIGhpc3TDs3JpY29zLCBlc3RhZMOtc3RpY29zIHkgYWRtaW5pc3RyYXRpdm9zIGRlIGxhIEluc3RpdHVjacOzbi4gRGUgY29uZm9ybWlkYWQgY29uIGxvIGVzdGFibGVjaWRvIGVuIGVsIGFydMOtY3VsbyAzMCBkZSBsYSBMZXkgMjMgZGUgMTk4MiB5IGVsIGFydMOtY3VsbyAxMSBkZSBsYSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLCBhY2xhcmFtb3MgcXVlIOKAnExvcyBkZXJlY2hvcyBtb3JhbGVzIHNvYnJlIGVsIHRyYWJham8gc29uIHByb3BpZWRhZCBkZSBsb3MgYXV0b3Jlc+KAnSwgbG9zIGN1YWxlcyBzb24gaXJyZW51bmNpYWJsZXMsIGltcHJlc2NyaXB0aWJsZXMsIGluZW1iYXJnYWJsZXMgZSBpbmFsaWVuYWJsZXMuCgpDb24gZWwgcmVnaXN0cm8gZW4gbGEgcMOhZ2luYSwgYXV0b3Jpem8gZGUgbWFuZXJhIGV4cHJlc2EgYSBsYSBGVU5EQUNJw5NOIFVOSVZFUlNJREFEIERFIEJPR09Uw4EgSk9SR0UgVEFERU8gTE9aQU5PLCBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwYXJhIHByb2Nlc2FyIG8gY29uc2VydmFyLCBjb24gZmluZXMgZXN0YWTDrXN0aWNvcywgZGUgY29udHJvbCBvIHN1cGVydmlzacOzbiwgYXPDrSBjb21vIHBhcmEgZWwgZW52w61vIGRlIGluZm9ybWFjacOzbiB2w61hIGNvcnJlbyBlbGVjdHLDs25pY28sIGRlbnRybyBkZWwgbWFyY28gZXN0YWJsZWNpZG8gcG9yIGxhIExleSAxNTgxIGRlIDIwMTIgeSBzdXMgZGVjcmV0b3MgY29tcGxlbWVudGFyaW9zIHNvYnJlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuIEVuIGN1YWxxdWllciBjYXNvLCBlbnRpZW5kbyBxdWUgcG9kcsOpIGhhY2VyIHVzbyBkZWwgZGVyZWNobyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgbyBzdXByaW1pciBsb3MgZGF0b3MgcGVyc29uYWxlcyBtZWRpYW50ZSBlbCBlbnbDrW8gZGUgdW5hIGNvbXVuaWNhY2nDs24gZXNjcml0YSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIHByb3RlY2Npb25kYXRvc0B1dGFkZW8uZWR1LmNvLgoKTGEgRlVOREFDScOTTiBVTklWRVJTSURBRCBERSBCT0dPVMOBIEpPUkdFIFRBREVPIExPWkFOTyBubyB1dGlsaXphcsOhIGxvcyBkYXRvcyBwZXJzb25hbGVzIHBhcmEgZmluZXMgZGlmZXJlbnRlcyBhIGxvcyBhbnVuY2lhZG9zIHkgZGFyw6EgdW4gdXNvIGFkZWN1YWRvIHkgcmVzcG9uc2FibGUgYSBzdXMgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYSBkaXJlY3RyaXogZGUgUHJvdGVjY2nDs24gZGUgRGF0b3MgUGVyc29uYWxlcyBxdWUgcG9kcsOhIGNvbnN1bHRhciBlbjogaHR0cDovL3d3dy51dGFkZW8uZWR1LmNvL2VzL2xpbmsvZGVzY3VicmUtbGEtdW5pdmVyc2lkYWQvMi9kb2N1bWVudG9zCg==