Parameter Recognition of Engineering Constants of CLSMs in Civil Engineering Using Artificial Neural Networks
Controlled low-strength materials (CLSMs) had been widely applied to excavation and backfill in civil engineering. However, the engineering properties of CLSM in these embankments vary dramatically due to different contents involved. This study is proposed to employ the ANSYS software and two differ...
- Autores:
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2017
- Institución:
- Universidad de Bogotá Jorge Tadeo Lozano
- Repositorio:
- Expeditio: repositorio UTadeo
- Idioma:
- eng
- OAI Identifier:
- oai:expeditiorepositorio.utadeo.edu.co:20.500.12010/16830
- Acceso en línea:
- https://www.intechopen.com/books/advanced-applications-for-artificial-neural-networks/parameter-recognition-of-engineering-constants-of-clsms-in-civil-engineering-using-artificial-neural
http://hdl.handle.net/20.500.12010/16830
- Palabra clave:
- Ingeniería civil
ingeniería de CLSM
Redes neuronales artificiales
Reconocimiento de parámetros
- Rights
- License
- Abierto (Texto Completo)