High grade glioma segmentation in magnetic resonance imaging
Through this work we propose a computational technique for the segmentation of magnetic resonance images (MRI) of a brain tumor, identified as high grade glioma (HGG), specifically grade III anaplastic astrocytoma. This technique consists of 3 stages developed in the threedimensional domain. They ar...
- Autores:
-
Vera, Miguel
Huérfano, Yoleidy
Martínez, Luis Javier
Contreras, Yudith
Salazar, Williams
Vera, María Isabel
Valbuena, Oscar
Borrero, Maryury
Hernández, Carlos
Barrera, Doris
Molina, Ángel Valentín
Salazar, Juan
Gelvez, Elkin
Sáenz, Frank
Hoyos, Diego
Arias, Yeny
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/2528
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/2528
- Palabra clave:
- Magnetic resonance brain imaging
Cerebral tumor
High grade glioma
Grade III anaplastic astrocytoma
Computational technique
Segmentation
Imágenes cerebrales por resonancia magnética
Tumor cerebral
Gliomas de alto grado
Astrocitoma anaplásico de grado III
Técnica computacional
Segmentación
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id |
USIMONBOL2_c2bb52db1125b178321ba37b1ffc2a60 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/2528 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
High grade glioma segmentation in magnetic resonance imaging |
dc.title.alternative.spa.fl_str_mv |
Segmentación de glioma de alto grado en imágenes de resonancia magnética |
title |
High grade glioma segmentation in magnetic resonance imaging |
spellingShingle |
High grade glioma segmentation in magnetic resonance imaging Magnetic resonance brain imaging Cerebral tumor High grade glioma Grade III anaplastic astrocytoma Computational technique Segmentation Imágenes cerebrales por resonancia magnética Tumor cerebral Gliomas de alto grado Astrocitoma anaplásico de grado III Técnica computacional Segmentación |
title_short |
High grade glioma segmentation in magnetic resonance imaging |
title_full |
High grade glioma segmentation in magnetic resonance imaging |
title_fullStr |
High grade glioma segmentation in magnetic resonance imaging |
title_full_unstemmed |
High grade glioma segmentation in magnetic resonance imaging |
title_sort |
High grade glioma segmentation in magnetic resonance imaging |
dc.creator.fl_str_mv |
Vera, Miguel Huérfano, Yoleidy Martínez, Luis Javier Contreras, Yudith Salazar, Williams Vera, María Isabel Valbuena, Oscar Borrero, Maryury Hernández, Carlos Barrera, Doris Molina, Ángel Valentín Salazar, Juan Gelvez, Elkin Sáenz, Frank Hoyos, Diego Arias, Yeny |
dc.contributor.author.none.fl_str_mv |
Vera, Miguel Huérfano, Yoleidy Martínez, Luis Javier Contreras, Yudith Salazar, Williams Vera, María Isabel Valbuena, Oscar Borrero, Maryury Hernández, Carlos Barrera, Doris Molina, Ángel Valentín Salazar, Juan Gelvez, Elkin Sáenz, Frank Hoyos, Diego Arias, Yeny |
dc.subject.eng.fl_str_mv |
Magnetic resonance brain imaging Cerebral tumor High grade glioma Grade III anaplastic astrocytoma Computational technique Segmentation |
topic |
Magnetic resonance brain imaging Cerebral tumor High grade glioma Grade III anaplastic astrocytoma Computational technique Segmentation Imágenes cerebrales por resonancia magnética Tumor cerebral Gliomas de alto grado Astrocitoma anaplásico de grado III Técnica computacional Segmentación |
dc.subject.spa.fl_str_mv |
Imágenes cerebrales por resonancia magnética Tumor cerebral Gliomas de alto grado Astrocitoma anaplásico de grado III Técnica computacional Segmentación |
description |
Through this work we propose a computational technique for the segmentation of magnetic resonance images (MRI) of a brain tumor, identified as high grade glioma (HGG), specifically grade III anaplastic astrocytoma. This technique consists of 3 stages developed in the threedimensional domain. They are: pre-processing, segmentation and post-processing. The pre-processing stage uses a thresholding technique, morphological erosion filter (MEF), in gray scale, followed by a median filter and a gradient magnitude algorithm. On the other hand, in order to obtain a HGG preliminary segmentation, during the segmentation stage a clustering algorithm called region growing (RG) is implemented and it is applied to the preprocessed images. The RG requires, for its initialization, a seed voxel whose coordinates are obtained, automatically, through the training and validation of an intelligent operator based on support vector machines (SVM). Due to the high sensitivity of the RG to the location of the seed, the SVM is implemented as a highly selective binary classifier. During the post-processing stage, a morphological dilation filter is applied to preliminary segmentation generated by RG. The percent relative error (PrE) is considered by comparing the segmentations of the HGG, generated manually by a neuro-oncologist, with the dilated segmentations of the HGG, obtained automatically. The combination of parameters linked to the lowest PrE, allows establishing the optimal parameters of each computational algorithms that make up the proposed computational technique. The obtained results allow reporting a PrE of 11.10%, which indicates a good correlation between the manual segmentations and those produced by the computational technique developed. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2019-01-25T16:42:23Z |
dc.date.available.none.fl_str_mv |
2019-01-25T16:42:23Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
18564550 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12442/2528 |
identifier_str_mv |
18564550 |
url |
http://hdl.handle.net/20.500.12442/2528 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional |
rights_invalid_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
dc.publisher.spa.fl_str_mv |
Sociedad Latinoamericana de Hipertensión |
dc.source.spa.fl_str_mv |
Revista Latinoamericana de Hipertensión Vol. 13, No. 4 (2018) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
http://www.revhipertension.com/rlh_4_2018/3_high_grade_glioma_segmentation.pdf |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/fe7c2819-53d4-4e8a-806f-e6c87a8fa6fa/download https://bonga.unisimon.edu.co/bitstreams/25b30a71-1278-474e-93ff-9e28594125f5/download https://bonga.unisimon.edu.co/bitstreams/f3c41da8-4b4d-45e4-bd73-2f1a8e1cf872/download https://bonga.unisimon.edu.co/bitstreams/a836aa25-15d0-4b94-be12-f8bc4b24d10c/download https://bonga.unisimon.edu.co/bitstreams/31ec4aad-364f-4c17-b603-91fd86fc3cde/download https://bonga.unisimon.edu.co/bitstreams/232f4d3c-da77-4f71-8f48-564765af37b3/download |
bitstream.checksum.fl_str_mv |
b4636fec810b738be90bea6edc0a0e8b 3fdc7b41651299350522650338f5754d fcd3294a0ae82fd711b94377337821c9 5624deb4999f67131452a16471b6f3c6 c760fd44cc2ff636e3a349a7edc23a62 49d5aa3322e1338db63d5c312b244708 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076122591133696 |
spelling |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Vera, Miguelc485e4e3-5bbd-4d00-8ec7-e5bc8a0a21e3Huérfano, Yoleidy769899ba-e6a1-4144-95c2-ff4614f93578Martínez, Luis Javierd0fa0a36-7752-496a-979e-48fdb02a5ee9Contreras, Yudith5ec79ce9-bc7e-44bb-95cb-bf1dab3e3a64Salazar, Williamsfd007214-08c4-4cd6-ae19-7f2ba4f184eaVera, María Isabelc522f56e-ec03-4aa6-9e83-d339a37388acValbuena, Oscar262b3f8e-b422-4786-b036-2aaa5b963f84Borrero, Maryuryce8424b3-6f43-4a46-8f73-214fafbb62fdHernández, Carlosa82d5fb1-0724-456f-8223-93882ad7278dBarrera, Doris4b365c16-7d6f-4aee-985c-e70d635e8807Molina, Ángel Valentín5fcd607f-8710-40a9-b4dc-b9d1f71d1c1eSalazar, Juanfbd053e7-5aea-424c-812f-92153ecb9181Gelvez, Elkin90dd023c-1cb7-48ef-bff5-4071ee82a94cSáenz, Frank5a93b50c-3ebe-476e-8aa6-4286185e2b1dHoyos, Diegoe2ee20bc-d2c2-48f8-9b5c-a7dde7233bcdArias, Yeny05341fd2-a97e-4028-b98d-3b593f7d23e02019-01-25T16:42:23Z2019-01-25T16:42:23Z201818564550http://hdl.handle.net/20.500.12442/2528Through this work we propose a computational technique for the segmentation of magnetic resonance images (MRI) of a brain tumor, identified as high grade glioma (HGG), specifically grade III anaplastic astrocytoma. This technique consists of 3 stages developed in the threedimensional domain. They are: pre-processing, segmentation and post-processing. The pre-processing stage uses a thresholding technique, morphological erosion filter (MEF), in gray scale, followed by a median filter and a gradient magnitude algorithm. On the other hand, in order to obtain a HGG preliminary segmentation, during the segmentation stage a clustering algorithm called region growing (RG) is implemented and it is applied to the preprocessed images. The RG requires, for its initialization, a seed voxel whose coordinates are obtained, automatically, through the training and validation of an intelligent operator based on support vector machines (SVM). Due to the high sensitivity of the RG to the location of the seed, the SVM is implemented as a highly selective binary classifier. During the post-processing stage, a morphological dilation filter is applied to preliminary segmentation generated by RG. The percent relative error (PrE) is considered by comparing the segmentations of the HGG, generated manually by a neuro-oncologist, with the dilated segmentations of the HGG, obtained automatically. The combination of parameters linked to the lowest PrE, allows establishing the optimal parameters of each computational algorithms that make up the proposed computational technique. The obtained results allow reporting a PrE of 11.10%, which indicates a good correlation between the manual segmentations and those produced by the computational technique developed.A través de este trabajo se propone una técnica computacional para la segmentación de un tumor cerebral, identificado como un glioma de alto grado (HGG) de tipo astrocitoma anaplásico de grado III, que está presente en las imágenes de resonancia magnética (MRI). Esta técnica consta de 3 etapas desarrolladas en el dominio tridimensional. Ellas son: preprocesamiento, segmentación y postprocesamiento. La etapa de preprocesamiento utiliza una técnica de umbralización, un filtro de erosión morfológica (MEF), en escala de grises, seguido de un filtro de mediana y de un algoritmo de magnitud de gradiente. Por otro lado, con el propósito de generar una segmentación preliminar del HGG, durante la etapa de segmentación se implementa un algoritmo de agrupamiento, llamado crecimiento de regiones (RG), que se aplica a las imágenes preprocesadas. El RG requiere para su inicialización la ubicación de un vóxel semilla cuyas coordenadas se obtienen, automáticamente, a través del entrenamiento y la validación de un operador inteligente basado en máquinas de vectores de soporte (SVM). Debido a la alta sensibilidad del RG a la ubicación de la semilla, la SVM se implementa como un clasificador binario altamente selectivo. Durante la etapa de post-procesamiento, se aplica un filtro de dilatación morfológica a la segmentación preliminar, generada por RG. El error relativo porcentual (PrE) se considera para comparar las segmentaciones de la HGG generadas de forma manual por un neurooncólogo, con las segmentaciones dilatadas de la HGG, obtenidas automáticamente. La combinación de parámetros vinculados al PrE más bajo permite establecer los parámetros óptimos de cada uno de los algoritmos computacionales que componen la técnica computacional propuesta. Los resultados obtenidos permiten reportar un PrE de 11.10%, lo cual indica una buena correlación entre las segmentaciones manuales y las producidas por la técnica computacional desarrollada.engSociedad Latinoamericana de HipertensiónRevista Latinoamericana de HipertensiónVol. 13, No. 4 (2018)http://www.revhipertension.com/rlh_4_2018/3_high_grade_glioma_segmentation.pdfMagnetic resonance brain imagingCerebral tumorHigh grade gliomaGrade III anaplastic astrocytomaComputational techniqueSegmentationImágenes cerebrales por resonancia magnéticaTumor cerebralGliomas de alto gradoAstrocitoma anaplásico de grado IIITécnica computacionalSegmentaciónHigh grade glioma segmentation in magnetic resonance imagingSegmentación de glioma de alto grado en imágenes de resonancia magnéticaarticlehttp://purl.org/coar/resource_type/c_6501Stelzer K. Epidemiology and prognosis of brain metastases. Surg Neurol Int. 2013;4(Suppl 4):S192-202.Mcneill K. Epidemiology of Brain Tumors. Neurol Clin. 2016;34(4):981- 998.American Brain Tumor Association (ABTA). About Brain Tumors: A Primer for Patients and Caregivers. 9ª Edition. 2015 ABTA.WHO (2007). Cavenee W, Louis D, Ohgaki H et al. Eds. WHO Classification of Tumours of the Central Nervous System. WHO Regional Office Europe.Wu W., Lamborn K., Buckner J., Novotny P., Chang S., O’Fallon J., Jaeckle K., Prados M. Joint NCCTG and NABTC prognostic factors analysis for high-grade recurrent glioma. Neuro-oncology, 2010;12(2):164-172.Bjoern H. Menze et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE transactions on medical imaging, 2015; 34(10):1993-2024.Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro Oncol 2015 Oct;17 Suppl 4:iv1-iv62 PubMed ID 26511214.Gudbjartsson H. y Patz S.The rician distribution of noisy MRI data, Magn. Reson. Med. 1995;34 (1):910-914.Macovski A. Noise in MRI, Magn. Reson. Med. 1996:36 (1) 494-497.Jones T., Bymes T., Yang G. Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique. Neuro-Oncology. 2015;17(3):466–476.Cho H., Park H. (2017). Classification of low-grade and high-grade glioma using multi-modal image radiomics features. 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 3081 – 3084.Sezgin M., Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 2004; 13(1):146–165.Serra J. Image Analysis Using Mathematical Morphology. London, England: Academic Press, 1982.González R., Woods R. Digital Image Processing. USA: Prentice Hall, 2001.Mukhopadhyay S., Chanda B. A multiscale morphological approach to local contrast enhancement. Signal Processing. 2000; 80(4): 685–696.Yu Z., Wei G., Zhen C., Jing T., Ling L. Medical images edge detection based on mathematical morphology. In Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai– China, September 2005; 6492–6495.W. Pratt. Digital Image Processing. USA: John Wiley & Sons Inc, 2007.Fischer M., Paredes J., Arce G. Weighted median image sharpeners for the world wide web. IEEE Transactions on Image Processing. 2002;11(7):717-27.V. Vapnik, Statistical Learning Theory. New York: John Wiley & Sons, 1998.E. Osuna, R. Freund, y F. Girosi. Training support vector machines: an application to face detection. In Conference on Computer Vision and Pattern Recognition (CVPR ’97), San Juan, Puerto Rico, 1997, 130–136.A. Smola. Learning with kernels. Ph.D Thesis, Technische Universitt Berlin,Germany, 1998.B. Scholkopf y A. Smola, Learning with Kernels: Support Vector Machines, Regularization,Optimization, and Beyond. Cambridge, MA , USA: The MIT Press, 2002.J. Suykens, T. V. Gestel, y J. D. Brabanter, Least Squares Support Vector Machines.UK: World Scientific Publishing Co., 2002.M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, y T. Poggio. Pedestrian detection using wavelet templates. In CVPR ’97: Conference on Computer Vision and Pattern Recognition (CVPR ’97). Washington, DC, USA: IEEE Computer Society, 1997,193–200.Vera M. Segmentación de estructuras cardiacas en imágenes de tomografía computarizada multi-corte. Ph.D Thesis, Universidad de los Andes, Mérida-Venezuela, 2014.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf619448https://bonga.unisimon.edu.co/bitstreams/fe7c2819-53d4-4e8a-806f-e6c87a8fa6fa/downloadb4636fec810b738be90bea6edc0a0e8bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/25b30a71-1278-474e-93ff-9e28594125f5/download3fdc7b41651299350522650338f5754dMD52TEXTHigh grade glioma segmentation.pdf.txtHigh grade glioma segmentation.pdf.txtExtracted texttext/plain33942https://bonga.unisimon.edu.co/bitstreams/f3c41da8-4b4d-45e4-bd73-2f1a8e1cf872/downloadfcd3294a0ae82fd711b94377337821c9MD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain34315https://bonga.unisimon.edu.co/bitstreams/a836aa25-15d0-4b94-be12-f8bc4b24d10c/download5624deb4999f67131452a16471b6f3c6MD55THUMBNAILHigh grade glioma segmentation.pdf.jpgHigh grade glioma segmentation.pdf.jpgGenerated Thumbnailimage/jpeg1914https://bonga.unisimon.edu.co/bitstreams/31ec4aad-364f-4c17-b603-91fd86fc3cde/downloadc760fd44cc2ff636e3a349a7edc23a62MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg6727https://bonga.unisimon.edu.co/bitstreams/232f4d3c-da77-4f71-8f48-564765af37b3/download49d5aa3322e1338db63d5c312b244708MD5620.500.12442/2528oai:bonga.unisimon.edu.co:20.500.12442/25282024-08-14 21:53:03.527open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4= |