High grade glioma segmentation in magnetic resonance imaging

Through this work we propose a computational technique for the segmentation of magnetic resonance images (MRI) of a brain tumor, identified as high grade glioma (HGG), specifically grade III anaplastic astrocytoma. This technique consists of 3 stages developed in the threedimensional domain. They ar...

Full description

Autores:
Vera, Miguel
Huérfano, Yoleidy
Martínez, Luis Javier
Contreras, Yudith
Salazar, Williams
Vera, María Isabel
Valbuena, Oscar
Borrero, Maryury
Hernández, Carlos
Barrera, Doris
Molina, Ángel Valentín
Salazar, Juan
Gelvez, Elkin
Sáenz, Frank
Hoyos, Diego
Arias, Yeny
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/2528
Acceso en línea:
http://hdl.handle.net/20.500.12442/2528
Palabra clave:
Magnetic resonance brain imaging
Cerebral tumor
High grade glioma
Grade III anaplastic astrocytoma
Computational technique
Segmentation
Imágenes cerebrales por resonancia magnética
Tumor cerebral
Gliomas de alto grado
Astrocitoma anaplásico de grado III
Técnica computacional
Segmentación
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
Description
Summary:Through this work we propose a computational technique for the segmentation of magnetic resonance images (MRI) of a brain tumor, identified as high grade glioma (HGG), specifically grade III anaplastic astrocytoma. This technique consists of 3 stages developed in the threedimensional domain. They are: pre-processing, segmentation and post-processing. The pre-processing stage uses a thresholding technique, morphological erosion filter (MEF), in gray scale, followed by a median filter and a gradient magnitude algorithm. On the other hand, in order to obtain a HGG preliminary segmentation, during the segmentation stage a clustering algorithm called region growing (RG) is implemented and it is applied to the preprocessed images. The RG requires, for its initialization, a seed voxel whose coordinates are obtained, automatically, through the training and validation of an intelligent operator based on support vector machines (SVM). Due to the high sensitivity of the RG to the location of the seed, the SVM is implemented as a highly selective binary classifier. During the post-processing stage, a morphological dilation filter is applied to preliminary segmentation generated by RG. The percent relative error (PrE) is considered by comparing the segmentations of the HGG, generated manually by a neuro-oncologist, with the dilated segmentations of the HGG, obtained automatically. The combination of parameters linked to the lowest PrE, allows establishing the optimal parameters of each computational algorithms that make up the proposed computational technique. The obtained results allow reporting a PrE of 11.10%, which indicates a good correlation between the manual segmentations and those produced by the computational technique developed.