Strategies for microbial decontamination of fresh blueberries and derived products

Increasing consumption of blueberries is associated with appreciation of their organoleptic properties together with their multiple health benefits. The increasing number of outbreaks caused by pathogenic microorganisms associated with their consumption in the fresh state and the rapid spoilage of t...

Full description

Autores:
Pérez-Lavalle, Liliana
Carrasco, Elena
Valero, Antonio
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/6753
Acceso en línea:
https://hdl.handle.net/20.500.12442/6753
https://doi.org/10.3390/foods9111558
https://www.mdpi.com/2304-8158/9/11/1558
Palabra clave:
blueberry
Processed fruits
Non-thermal technologies
Chemical strategies
Physical strategies
Biological strategies
Microbial decontamination
Quality and safety
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_9cdc4c7e5ea11c192b51b0c47a02ce1e
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/6753
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Strategies for microbial decontamination of fresh blueberries and derived products
title Strategies for microbial decontamination of fresh blueberries and derived products
spellingShingle Strategies for microbial decontamination of fresh blueberries and derived products
blueberry
Processed fruits
Non-thermal technologies
Chemical strategies
Physical strategies
Biological strategies
Microbial decontamination
Quality and safety
title_short Strategies for microbial decontamination of fresh blueberries and derived products
title_full Strategies for microbial decontamination of fresh blueberries and derived products
title_fullStr Strategies for microbial decontamination of fresh blueberries and derived products
title_full_unstemmed Strategies for microbial decontamination of fresh blueberries and derived products
title_sort Strategies for microbial decontamination of fresh blueberries and derived products
dc.creator.fl_str_mv Pérez-Lavalle, Liliana
Carrasco, Elena
Valero, Antonio
dc.contributor.author.none.fl_str_mv Pérez-Lavalle, Liliana
Carrasco, Elena
Valero, Antonio
dc.subject.eng.fl_str_mv blueberry
Processed fruits
Non-thermal technologies
Chemical strategies
Physical strategies
Biological strategies
Microbial decontamination
Quality and safety
topic blueberry
Processed fruits
Non-thermal technologies
Chemical strategies
Physical strategies
Biological strategies
Microbial decontamination
Quality and safety
description Increasing consumption of blueberries is associated with appreciation of their organoleptic properties together with their multiple health benefits. The increasing number of outbreaks caused by pathogenic microorganisms associated with their consumption in the fresh state and the rapid spoilage of this product which is mainly caused by moulds, has led to the development and evaluation of alternatives that help mitigate this problem. This article presents di erent strategies ranging from chemical, physical and biological technologies to combined methods applied for microbial decontamination of fresh blueberries and derived products. Sanitizers such as peracetic acid (PAA), ozone (O3), and electrolyzed water (EOW), and physical technologies such as pulsed light (PL) and cold plasma (CP) are potential alternatives to the use of traditional chlorine. Likewise, high hydrostatic pressure (HHP) or pulsed electrical fields (PEF) successfully achieve microbial reductions in derivative products. A combination of methods at moderate intensities or levels is a promising strategy to increase microbial decontamination with a minimal impact on product quality.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-05T10:32:33Z
dc.date.available.none.fl_str_mv 2020-11-05T10:32:33Z
dc.date.issued.none.fl_str_mv 2020
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.issn.none.fl_str_mv 23048158
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/6753
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/foods9111558
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2304-8158/9/11/1558
identifier_str_mv 23048158
url https://hdl.handle.net/20.500.12442/6753
https://doi.org/10.3390/foods9111558
https://www.mdpi.com/2304-8158/9/11/1558
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv MDPI
dc.source.eng.fl_str_mv Foods
dc.source.none.fl_str_mv Vol. 9 N° 11, (2020)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/8035d5f4-e60b-4c2b-adef-508c2a9f2c0e/download
https://bonga.unisimon.edu.co/bitstreams/fe9ad3fc-8412-4032-b857-a9409e04e243/download
https://bonga.unisimon.edu.co/bitstreams/49f46eea-4f42-4766-ba9e-f159c90b76b9/download
https://bonga.unisimon.edu.co/bitstreams/759337bc-6cd8-4219-b343-9aaa209048c6/download
https://bonga.unisimon.edu.co/bitstreams/ba234902-725d-4e48-bf05-da971bc32edf/download
https://bonga.unisimon.edu.co/bitstreams/6acd38a9-953e-44d2-b1f2-3dfea0d53346/download
https://bonga.unisimon.edu.co/bitstreams/8868fbe3-8fa7-4a34-a3f3-8b8d1b7ccfb3/download
bitstream.checksum.fl_str_mv d1ae80bf33aa6069fa39436872feb230
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
bbc3883cc575395ac6a1ed972021d703
d639ad1f9763fc7d1360454bbfb93c9f
78b5d693147a9ad8be4a572df48e0a16
d8ddcf0e474e0a37cc0b07c25b78b6e2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100527010349056
spelling Pérez-Lavalle, Liliana1eeb602a-4ddb-4410-a7a3-177e99991511Carrasco, Elena7a9aa2c7-5c93-4c2f-9ea6-5ddb5ba52841Valero, Antonio621a30db-6059-4294-a2d7-1ae0b4d4e2ac2020-11-05T10:32:33Z2020-11-05T10:32:33Z202023048158https://hdl.handle.net/20.500.12442/6753https://doi.org/10.3390/foods9111558https://www.mdpi.com/2304-8158/9/11/1558Increasing consumption of blueberries is associated with appreciation of their organoleptic properties together with their multiple health benefits. The increasing number of outbreaks caused by pathogenic microorganisms associated with their consumption in the fresh state and the rapid spoilage of this product which is mainly caused by moulds, has led to the development and evaluation of alternatives that help mitigate this problem. This article presents di erent strategies ranging from chemical, physical and biological technologies to combined methods applied for microbial decontamination of fresh blueberries and derived products. Sanitizers such as peracetic acid (PAA), ozone (O3), and electrolyzed water (EOW), and physical technologies such as pulsed light (PL) and cold plasma (CP) are potential alternatives to the use of traditional chlorine. Likewise, high hydrostatic pressure (HHP) or pulsed electrical fields (PEF) successfully achieve microbial reductions in derivative products. A combination of methods at moderate intensities or levels is a promising strategy to increase microbial decontamination with a minimal impact on product quality.pdfengMDPIAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2FoodsVol. 9 N° 11, (2020)blueberryProcessed fruitsNon-thermal technologiesChemical strategiesPhysical strategiesBiological strategiesMicrobial decontaminationQuality and safetyStrategies for microbial decontamination of fresh blueberries and derived productsinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Jimenez-Garcia, S.N.; Guevara-Gonzalez, R.G.; Miranda-Lopez, R.; Feregrino-Perez, A.A.; Torres-Pacheco, I.; Vazquez-Cruz, M.A. Functional properties and quality characteristics of bioactive compounds in berries: Biochemistry, biotechnology, and genomics. Food Res. Int. 2013, 54, 1195–1207.Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their e ect on human health. Nutrition 2014, 30, 134–144.Cassidy, A. Berry anthocyanin intake and cardiovascular health. Mol. Asp. Med. 2018, 61, 76–82.Istek, N.; Gurbuz, O. Investigation of the impact of blueberries on metabolic factors influencing health. J. Funct. Foods 2017, 38, 298–307.Neto, C.C. Cranberry and blueberry: Evidence for protective e ects against cancer and vascular diseases. Mol. Nutr. Food Res. 2007, 51, 652–664.Norberto, S.; Silva, S.; Meireles, M.; Faria, A.; Pintado, M.; Calhau, C. Blueberry anthocyanins in health promotion: A metabolic overview. J. Funct. Foods 2013, 5, 1518–1528.Ryser, E.T.; Marth, E.H. Listeria, Listeriosis, and Food Safety; CRC Press: Boca Raton, FL, USA, 2007.Calder, L.; Simmons, G.; Thornley, C. An outbreak of hepatitis A associated with consumption of raw blueberries. Epidemiol. Infect. 2003, 131, 745–751.Luna-Gierke, R.E.; Gri n, P.M.; Gould, L.H.; Herman, K.; Boop, C.A.; Strockbine, N.; Mody, R.K. Outbreaks of non-O157 Shiga toxin-producing Escherichia coli infection: USA. Epidemiol. Infect. 2014, 2270–2280.National Outbreak Reporting System (NORS). Dashboard CDC. Available online: https://wwwn.cdc.gov/ norsdashboard/ (accessed on 31 August 2020).Miller, B.D.; Rigdon, C.E.; Robinson, T.J.; Hedberg, C.; Smith, K.E. Use of Global Trade Item Numbers in the Investigation of a Salmonella Newport Outbreak Associated with Blueberries in Minnesota, 2010. J. Food Prot. 2013, 76, 762–769.RASFF. Portal. Available online: https://webgate.ec.europa.eu/rasff-window/portal/?event=notificationDetail& NOTIF_REFERENCE=2020.0759 (accessed on 31 August 2020).RASFF. Portal. Available online: https://webgate.ec.europa.eu/rasff-window/portal/?event=notificationDetail& NOTIF_REFERENCE=2018.3574 (accessed on 31 August 2020).EFSA. Scientific Opinion on the risk posed by pathogens in food of non-animal origin. Part 2 (Salmonella and Norovirus in berries) 1. EFSA J. 2014, 12, 1–95.Gazula, H.; Quansah, J.; Allen, R.; Scherm, H.; Li, C.; Takeda, F.; Chen, J. Microbial loads on selected fresh blueberry packing lines. Food Control 2019, 100, 315–320.Quansah, J.K.; Gazula, H.; Holland, R.; Scherm, H.; Li, C.; Takeda, F.; Chen, J. Microbial quality of blueberries for the fresh market. Food Control 2019, 100, 92–96.Eckert, J.W.; Ogawa, J.M. The Chemical Control of Postharvest Diseases: Deciduous Fruits, Berries, Vegetables and Root/Tuber Crops. Annu. Rev. Phytopathol. 1988, 26, 433–469.Tournas, V.H.; Katsoudas, E.Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. FoodMicrobiol. 2005, 105, 11–17.Wang, S.Y.; Chen, C.; Yin, J. E ect of allyl isothiocyanate on antioxidants and fruit decay of blueberries. Food Chem. 2010, 120, 199–204.Forney, C.F. Postharvest issues in blueberry and cranberry and methods to improve market-life. Acta Hortic. 2009, 810, 785–798.USHBC. Available online: Blueberries-retail-channel-w-Wild.vLogo_.pdf (accessed on 31 August 2020).CBI-Centre for the Promotion of Imports from Developing Countries. The European Market Potential for Fresh Blueberries. Available online: https://www.cbi.eu/market-information/fresh-fruit-vegetables/blueberries/ market-potential (accessed on 31 August 2020).Huang, Y.; Chen, H. A novel water-assisted pulsed light processing for decontamination of blueberries. Food Microbiol. 2014, 40, 1–8.Sy, K.V.; Watters, K.H.; Beuchat, L. E cacy of Gaseous Chlorine Dioxide as a Sanitizer for Killing Salmonella, Yeasts, and Molds on Blueberries, Strawberries, and Raspberries. J. Food Prot. 2005, 68, 1165–1175.Crowe, K.M.; Bushway, A.A.; Bushway, R.J.; Crowe, K.M.; Bushway, A.A. E ects of Alternative Postharvest Treatments on the Microbiological Quality of Lowbush Blueberries. Small Fruits Rev. 2005, 4, 29–39.Lafarga, T.; Colás-medà, P.; Abadías, M.; Aguiló-aguayo, I.; Bobo, G. Strategies to reduce microbial risk and improve quality of fresh and processed strawberries: A review. Innov. Food Sci. Emerg. Technol. 2019, 52, 197–212.Meireles, A.; Giaouris, E.; Simões, M. Alternative disinfection methods to chlorine for use in the fresh-cut industry. FRIN 2016, 82, 71–85.Beuchat, L.R.; Pettigrew, C.A.; Tremblay, M.E.; Roselle, B.J.; Scouten, A.J. Lethality of Chlorine, Chlorine Dioxide, and a Commercial Fruit and Vegetable Sanitizer to Vegetative Cells and Spores of Bacillus cereus and Spores of Bacillus thuringiensis. J. Food Prot. 2004, 67, 1702–1708.Olmez, H.; Kretzschmar, U. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT Food Sci. Technol. 2009, 42, 686–693.Wu, V.C.H.; Kim, B. E ect of a simple chlorine dioxide method for controlling five foodborne pathogens, yeasts and molds on blueberries. Food Microbiol. 2007, 24, 794–800.Sun, X.; Baldwin, E.; Bai, J. Applications of gaseous chlorine dioxide on postharvest handling and storage of fruits and vegetables–A review. Food Control 2019, 95, 18–26.Annous, B.A.; Buckley, D.; Burke, A. Evaluation of Chlorine Dioxide Gas against Four Salmonella enterica Serovars Artificially Contaminated on Whole Blueberries. J. Food Prot. 2020, 83, 412–417.Ramos, B.; Miller, F.A.; Brandão, T.R.S.; Teixeira, P.; Silva, C.L.M. Fresh fruits and vegetables—An overview on applied methodologies to improve its quality and safety. Innov. Food Sci. Emerg. Technol. 2013, 20, 1–15.CFR-Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/ cfdocs/cfcfr/CFRSearch.cfm?fr=173.300 (accessed on 31 August 2020).Deng, L.Z.; Mujumdar, A.S.; Pan, Z.; Vidyarthi, S.K.; Xu, J.; Zielinska, M.; Xiao, H.-W. Emerging chemical and physical disinfection technologies of fruits and vegetables: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 60, 2481–2508.Zhang, L.; Yan, Z.; Hanson, E.J.; Ryser, E.T. E cacy of chlorine dioxide gas and freezing rate on the microbiological quality of frozen blueberries. Food Control 2015, 47, 114–119.Chai, H.-E.; Hwang, C.A.; Huang, L.; Wu, V.C.H.; Sheen, L.Y. Feasibility and e cacy of using gaseous chlorine dioxide generated by sodium chlorite-acid reaction for decontamination of foodborne pathogens on produce. Food Control 2020, 108, 106839.Kingsley, D.H.; Annous, B.A. Evaluation of Steady-State Gaseous Chlorine Dioxide Treatment for the Inactivation of Tulane virus on Berry Fruits. Food Environ. Virol. 2019, 11, 214–219.Kingsley, D.H.; Pérez-pérez, R.E.; Niemira, B.A.; Fan, X. Evaluation of gaseous chlorine dioxide for the inactivation of Tulane virus. Int. J. Food Microbiol. 2018, 273, 28–32.Sun, X.; Bai, J.; Ference, C.; Wang, Z.H.E.; Zhang, Y.; Narciso, J.A.N.; Zhou, K. Antimicrobial Activity of Controlled-Release Chlorine Dioxide Gas on Fresh Blueberries 1. J. Food Prot. 2014, 77, 1127–1132.Chun, H.H.; Kang, J.H.; Song, K.B. E ects of aqueous chlorine dioxide treatment and cold storage on microbial growth and quality of blueberries. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 309–315.Girard, M.; Mattison, K.; Fliss, I.; Jean, J. E cacy of oxidizing disinfectants at inactivating murine norovirus on ready-to-eat foods. Int. J. Food Microbiol. 2016, 219, 7–11.Xu, F.;Wang, S.; Xu, J.; Liu, S.; Li, G. E ects of combined aqueous chlorine dioxide and UV-C on shelf-life quality of blueberries. Postharvest Biol. Technol. 2016, 117, 125–131.Feliziani, E.; Lichter, A.; Smilanick, J.L.; Ippolito, A. Disinfecting agents for controlling fruit and vegetable diseases after harvest. Postharvest Biol. Technol. 2016, 122, 53–69.Huynh, N.K.;Wilson, M.D.; Eyles, A.; Stanley, R.A. Recent advances in postharvest technologies to extend the shelf life of blueberries (Vaccinium sp.), raspberries (Rubus idaeus L.) and blackberries (Rubus sp.). J. Berry Res. 2019, 9, 687–707.Bialka, K.L.; Demirci, A. Decontamination of Escherichia coli O157:H7 and Salmonella enterica on blueberries using ozone and pulsed UV-light. J. Food Sci. 2007, 72, 391–396.Concha-Meyer, A.; Eifert, J.D.;Williams, R.C.; Marcy, J.E.; Welbaum, G.E. Shelf Life Determination of Fresh Blueberries (Vaccinium corymbosum) Stored under Controlled Atmosphere and Ozone. Available online: https://www.hindawi.com/journals/ijfs/2015/164143/ (accessed on 31 August 2020).Jaramillo-Sánchez, G.; Contigiani, E.V.; Castro, M.A.; Hodara, K.; Alzamora, S.M.; Loredo, A.G.; Nieto, A.B. Freshness Maintenance of Blueberries (Vaccinium corymbosum L.) during Postharvest Using Ozone in Aqueous Phase: Microbiological, Structure, and Mechanical issues. Food Bioprocess. Technol. 2019, 12, 2136–2147.Pangloli, P.; Hung, Y. Reducing microbiological safety risk on blueberries through innovative washing technologies. Food Control 2013, 32, 621–625.Concha-meyer, A.; Eifert, J.; Williams, R.; Marcy, J.; Welbaum, G. Survival of Listeria monocytogenes on Fresh Blueberries (Vaccinium corymbosum) Stored under Controlled Atmosphere and Ozone. J. Food Prot. 2014, 77, 832–836.Bridges, D.F.; Rane, B.; Wu, V.C.H. The e ectiveness of closed-circulation gaseous chlorine dioxide or ozone treatment against bacterial pathogens on produce. Food Control 2018, 91, 261–267.Kim, C.; Hung, Y. Inactivation of E. coli O157: H7 on Blueberries by ElectrolyzedWater, Ultraviolet Light, and Ozone. J. Food Sci. 2012, 77, M206–M211.Artés, F.; Gómez, P.; Aguayo, E.; Escalona, V.; Artés-hernández, F. Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol. Technol. 51 2009, 51, 287–296.Rood, L.; Koutoulis, A.; Bowman, J.P.; Evans, D.E.; Stanley, R.A.; Kaur, M. Control of microbes on barley grains using peroxyacetic acid and electrolysed water as antimicrobial agents. Food Microbiol. 2018, 76, 103–109.Singh, P.; Hung, Y.; Qi, H. E cacy of Peracetic Acid in Inactivating Foodborne Pathogens on Fresh Produce Surface. J. Food Sci. 2018, 88, 432–439.Sheng, L.; Tsai, H.; Zhu, H.; Zhu, M. Survival of Listeria monocytogenes on blueberries post-sanitizer treatments and subsequent cold storages. Food Control 2019, 100, 138–143.Callahan, S.; Perry, J.J. Survival of Listeria innocua and Native Microflora in Sanitizer-TreatedWild Blueberries (Vaccinium angustifolium). Int. J. Fruit Sci. 2019, 1–16.de Siqueira Oliveira, L.; Eça, K.S.; de Aquino, A.C.; Vasconcelos, L.B. Chapter 4-Hydrogen Peroxide (H2O2) for Postharvest Fruit and Vegetable Disinfection. In Postharvest Disinfection of Fruits and Vegetables; Siddiqui, M.W., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 91–99, ISBN 978-0-12-812698-1.Becker, B.; Dabisch-Ruthe, M.; Pfannebecker, J. Inactivation of Murine Norovirus on Fruit and Vegetable Surfaces by Vapor Phase Hydrogen Peroxide. J. Food Prot. 2020, 83, 45–51.Rico, D.; Martín-Diana, A.B.; Barat, J.M.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: A review. Trends Food Sci. Technol. 2007, 18, 373–386.Li, Y.;Wu, C. Enhanced inactivation of Salmonella Typhimurium from blueberries by combinations of sodium dodecyl sulfate with organic acids or hydrogen peroxide. FRIN 2013, 54, 1553–1559.Liato, V.; Hammami, R.; Aïder, M. In fluence of electro-activated solutions of weak organic acid salts on microbial quality and overall appearance of blueberries during storage. Food Microbiol. 2017, 64, 56–64.Chiabrando, V.; Giacalone, G. Anthocyanins, phenolics and antioxidant capacity after fresh storage of blueberry treated with edible coatings. Int. J. Food Sci. Nutr. 2015, 1–6.Duan, J.;Wu, R.; Strik, B.C.; Zhao, Y. E ect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biol. Technol. 2011, 59, 71–79.Dhall, R.K. Advances in Edible Coatings for Fresh Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 435–450.Lin, D.; Zhao, Y. Innovations in the Development and Application of Edible Coatings for Fresh and Minimally Processed Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2007, 6, 60–75.Rabea, E.I.; Stevens, C.V.; Smagghe, G.; Steurbaut,W. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules 2003, 4, 1457–1465. [Hosseinnejad, M.; Jafari, S.M. Evaluation of di erent factors a ecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475.Abugoch, L.E.; Tapia, C.; Villamán, M.C.; Yazdani-Pedram, M.; Díaz-Dosque, M. Characterization of quinoa protein–chitosan blend edible films. Food Hydrocoll. 2011, 25, 879–886.Chiabrando, V.; Giacalone, G. Quality evaluation of blueberries coated with chitosan and sodium alginate during postharvest storage. Int. Food Res. J. 2017, 24, 1553–1561.Jiang, H.; Sun, Z.; Jia, R.; Wang, X.; Huang, J. Efect of Chitosan as an Antifungal and Preservative Agent on Postharvest Blueberry. J. Food Qual. 2016, 39, 516–523.Sun, X.; Narciso, J.;Wang, Z.; Ference, C.; Bai, J.; Zhou, K. E ects of Chitosan-Essential Oil Coatings on Safety and Quality of Fresh Blueberries. J. Food Sci. 2014, 79, 955–960.Abugoch, L.; Tapia, C.; Plasencia, D.; Pastor, A.; Castro-Mandujano, O.; López, L.; Escalona, V.H. Shelf-life of fresh blueberries coated with quinoa protein/chitosan/sunflower oil edible film. J. Sci. Food Agric. 2015, 96, 619–626.Vieira, J.M.; Flores-lópez, M.L.; Jasso de Rodríguez, D.; Sousa, M.C.; Vicente, A.A.; Martins, J.T. E ect of chitosan–Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biol. Technol. 2016, 116, 88–97.Alvarez, M.V.; Ponce, A.G.; Moreira, M.R. Influence of polysaccharide-based edible coatings as carriers of prebiotic fibers on quality attributes of ready-to-eat fresh blueberries. J. Sci. Food Agric. 2018, 98, 2587–2597.Yang, G.; Yue, J.; Gong, X.; Qian, B.;Wang, H.; Deng, Y.; Zhao, Y. Blueberry leaf extracts incorporated chitosan coatings for preserving postharvest quality of fresh blueberries. Postharvest Biol. Technol. 2014, 92, 46–53.Falcó, I.; Randazzo, W.; Sánchez, G.; López-Rubio, A.; Fabra, M.J. On the use of carrageenan matrices for the development of antiviral edible coatings of interest in berries. Food Hydrocoll. 2019, 92, 74–85Moreno, M.A.; Bojorges, H.; Falcó, I.; Sánchez, G.; López-Carballo, G.; López-Rubio, A.; Zampini, I.C.; Isla, M.I.; Fabra, M.J. Active properties of edible marine polysaccharide-based coatings containing Larrea nitida polyphenols enriched extract. Food Hydrocoll. 2020, 102, 105595. [Umagiliyage, A.L.; Becerra-Mora, N.; Kohli, P.; Fisher, D.J.; Choudhary, R. Antimicrobial e cacy of liposomes containing d-limonene and its e ect on the storage life of blueberries. Postharvest Biol. Technol. 2017, 128, 130–137.Zhang, Z.H.;Wang, L.H.; Zeng, X.A.; Han, Z.; Brennan, C.S. Non-thermal technologies and its current and future application in the food industry: A review. Int. J. Food Sci. Technol. 2019, 54, 1–13.Keklik, N.M.; Krishnamurthy, K.; Demirci, A. 12-Microbial decontamination of food by ultraviolet (UV) and pulsed UV light. In Microbial Decontamination in the Food Industry; Demirci, A., Ngadi, M.O., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 344–369, ISBN 978-0-85709-085-0.Lado, B.H.; Yousef, A.E. Alternative food-preservation technologies: E cacy and mechanisms. Microbes Infect. 2002, 4, 433–440.Liu, C.; Li, X.; Chen, H. Application of water-assisted ultraviolet light processing on the inactivation of murine norovirus on blueberries. Int. J. Food Microbiol. 2015, 214, 18–23.Butot, S.; Cantergiani, F.; Moser, M.; Jean, J.; Lima, A.; Michot, L.; Putallaz, T.; Stroheker, T.; Zuber, S. UV-C inactivation of foodborne bacterial and viral pathogens and surrogates on fresh and frozen berries. Int. J. Food Microbiol. 2018, 275, 8–16.Huang, R.; Chen, H. Use of 254 nm ultraviolet light for decontamination of fresh produce and wash water. Food Control 2020, 109, 106926.Guo, S.; Huang, R.; Chen, H. Evaluating a Combined Method of UV and Washing for Sanitizing Blueberries, Tomatoes, Strawberries, Baby Spinach, and Lettuce. J. Food Prot. 2019, 82, 1879–1889.Liu, C.; Huang, Y.; Chen, H. Inactivation of Escherichia coli O157: H7 and Salmonella enterica on Blueberries in Water Using Ultraviolet Light. J. Food Sci. 2015.Huang, R.; Vries, D.D.; Chen, H. Strategies to enhance fresh produce decontamination using combined treatments of ultraviolet, washing and disinfectants. Int. J. Food Microbiol. 2018, 283, 37–44.Cho, M.; Choi, Y.; Park, H.; Kim, K.;Woo, G.J.; Park, J. Titanium dioxide/UV photocatalytic disinfection in fresh carrots. J. Food Prot. 2007, 70, 97–101.Ramesh, T.; Nayak, B.; Amirbahman, A.; Tripp, C.P.; Mukhopadhyay, S. Application of ultraviolet light assisted titanium dioxide photocatalysis for food safety: A review. Innov. Food Sci. Emerg. Technol. 2016, 38, 105–115.Lee, M.; Shahbaz, H.; Kim, J.; Lee, H.; Lee, D.; Park, J. E cacy of UV-TiO 2 photocatalysis technology for inactivation of Escherichia coli K12 on the surface of blueberries and a model agar matrix and the influence of surface characteristics. Food Microbiol. 2018, 76, 526–532.Karppinen, K.; Zoratti, L.; Nguyenquynh, N.; Häggman, H.; Jaakola, L. On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. Berries. Front. Plant Sci. 2016, 7, 1–9.Wang, C.Y.; Chen, C.T.;Wang, S.Y. Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chem. 2009, 117, 426–431.Bhavya, M.L.; Umesh Hebbar, H. Pulsed light processing of foods for microbial safety. Food Qual. Saf. 2017, 1, 187–201.Gómez-López, V.M.; Ragaert, P.; Debevere, J.; Devlieghere, F. Pulsed light for food decontamination: A review. Trends Food Sci. Technol. 2007, 18, 464–473.CFR-Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/ cfdocs/cfcfr/CFRSearch.cfm?fr=179.41 (accessed on 1 September 2020).Huang, Y.; Ye, M.; Cao, X.; Chen, H. Pulsed light inactivation of murine norovirus, Tulane virus, Escherichia coli O157: H7 and Salmonella in suspension and on berry surfaces. Food Microbiol. 2017, 61, 14–17.Cao, X.; Huang, R.; Chen, H. Evaluation of pulsed light treatments on inactivation of Salmonella on blueberries and its impact on shelf-life and quality attributes. Int. J. Food Microbiol. 2017, 260, 17–26.Huang, Y.; Sido, R.; Huang, R.; Chen, H. Application of water-assisted pulsed light treatment to decontaminate raspberries and blueberries from Salmonella. Int. J. Food Microbiol. 2015, 208, 43–50.Huang, R.; Chen, H. Comparison ofWater-Assisted Decontamination Systems of Pulsed Light and Ultraviolet for Salmonella Inactivation on Blueberry, Tomato, and Lettuce. J. Food Sci. 2019, 84, 1145–1150.Huang, H.W.; Lung, H.M.; Yang, B.B.; Wang, C.Y. Responses of microorganisms to high hydrostatic pressure processing. Food Control 2014, 40, 250–259.Huang, R.; Ye, M.; Li, X.; Ji, L.; Karwe, M.; Chen, H. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries, blueberries, raspberries and in their purees. Int. J. Food Microbiol. 2016, 223, 17–24.Li, X.; Chen, H.; Kingsley, D.H. The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI. 1 and GII. 4 human noroviruses. Int. J. Food Microbiol. 2013, 167, 138–143.Li, X.; Ye, M.; Neetoo, H.; Golovan, S.; Chen, H. Pressure inactivation of Tulane virus, a candidate surrogate for human norovirus and its potential application in food industry. Int. J. Food Microbiol. 2013, 162, 37–42.Kabir, N.; Aras, S.; Allison, A.; Adhikari, J.; Chowdhury, S.; Fouladkhah, A. Interactions of Carvacrol, Caprylic Acid, Habituation, and Mild Heat for Pressure-Based Inactivation of O157 and Non-O157 Serogroups of Shiga Toxin-Producing Escherichia coli in Acidic Environment. Microorganisms 2019, 7, 145.James, S.; James, C. Minimal Processing of Ready Meals, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; ISBN 978-0-12-411479-1.Odriozola-Serrano, I.; Aguiló-Aguayo, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Pulsed electric fields processing e ects on quality and health-related constituents of plant-based foods. Trends Food Sci. Technol. 2013, 29, 98–107.Wouters, P.C.; Alvarez, I.; Raso, J. Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci. Technol. 2001, 12, 112–121.Zhu, N.;Wang, Y.; Zhu, Y.; Yang, L.; Yu, N.;Wei, Y.; Zhang, H.; Sun, A. Design of a treatment chamber for low-voltage pulsed electric fi eld sterilization. Innov. Food Sci. Emerg. Technol. 2017, 42, 180–189.Jin, T.Z.; Yu, Y.; Gurtler, J.B. E ects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. LWT Food Sci. Technol. 2017, 77, 517–524.Chen, J.; Tao, X.Y.; Sun, A.D.;Wang, Y.; Liao, X.J.; Li, L.N.; Zhang, S. Influence of pulsed electric field and thermal treatments on the quality of blueberry juice. Int. J. Food Prop. 2014, 17, 1419–1427.Zhu, N.; Yu, N.; Zhu, Y.; Wei, Y.; Hou, Y.; Zhang, H.; Sun, A.D. Identification of spoilage microorganisms in blueberry juice and their inactivation by a microchip pulsed electric field system. Sci. Rep. 2018, 8, 1–8.Zhu, N.; Zhu, Y.; Yu, N.; Wei, Y.; Zhang, J.; Hou, Y.; Sun, A. Evaluation of microbial, physicochemical parameters and flavor of blueberry juice after microchip-pulsed electric field. Food Chem. 2019, 274, 146–155.Niemira, B.A. Cold Plasma Decontamination of Foods. Annu. Rev. Food Sci. Technol 2012, 3, 125–142.Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Fan, X.; Sites, J.; Boyd, G.; Chen, H. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and e ects on quality attributes. Food Microbiol. 2015, 46, 479–484.Lacombe, A.; Niemira, B.A.; Gurtler, J.B.; Sites, J.; Boyd, G.; Kingsley, D.H.; Li, X.; Chen, H. Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. FoodMicrobiol. 2017, 63, 1–5.Dong, X.Y.; Yang, Y.L. A Novel Approach to Enhance Blueberry Quality during Storage Using Cold Plasma at Atmospheric Air Pressure. Food Bioprocess. Technol. 2019, 12, 1409–1421.Pathak, N.; Bovi, G.G.; Limnaios, A.; Fröhling, A.; Brincat, J.P.; Taoukis, P.; Valdramidis, V.P.; Schlüter, O. Impact of cold atmospheric pressure plasma processing on storage of blueberries. J. Food Process. Preserv. 2020, 44, e14581.Hou, Y.; Wang, R.; Gan, Z.; Shao, T.; Zhang, X.; He, M.; Sun, A. E ect of cold plasma on blueberry juice quality. Food Chem. 2019, 290, 79–86.Zhou, D.; Wang, Z.; Tu, S.; Chen, S.; Peng, J.; Tu, K. E ects of cold plasma, UV-C or aqueous ozone treatment on Botrytis cinerea and their potential application in preserving blueberry. J. Appl. Microbiol. 2019, 127, 175–185Moreno, M.A.; Castell-Perez, M.E.; Gomes, C.; Silva, P.F.D.; Moreira, R.G. Quality of electron beam irradiation of blueberries (Vaccinium corymbosum L) at medium dose levels (1.0–3.2 kGy). LWT Food Sci. Technol. 2007, 40, 1123–1132.Parish, M.E.; Beuchat, L.R.; Suslow, T.V.; Harris, L.J.; Garrett, E.H.; Farber, J.N.; Busta, F.F. Methods to Reduce/Eliminate Pathogens from Fresh and Fresh-Cut Produce. Compr. Rev. Food Sci. Food Safe 2003, 2, 161–173Thang, K.; Au, K.; Prakash, A. E ect of phytosanitary irradiation and methyl bromide fumigation on the physical, sensory, and microbiological quality of blueberries and sweet cherries. J. Sci. Food Agric. 2016, 96, 4382–4389.Lacombe, A.; Breard, A.; Hwang, C.; Hill, D.; Fan, X.; Huang, L.; Kwon, B.; Niemira, B.A.; Gurtler, J.B.; Wu, V.C.H. Inactivation of Toxoplasma gondii on blueberries using low dose irradiation without a ecting quality. Food Control 2017, 73, 981–985.Kong, Q.;Wu, A.; Qi,W.; Qi, R.; Mark, J.; Rasooly, R.; He, X. E ects of electron-beam irradiation on blueberries inoculated with Escherichia coli and their nutritional quality and shelf life. Postharvest Biol. Technol. 2014, 95, 28–35.Shahbaz, H.M.; Akram, K.; Ahn, J.J.; Kwon, J.H. Worldwide Status of Fresh Fruits Irradiation and Concerns about Quality, Safety, and Consumer Acceptance. Crit. Rev. Food Sci. Nutr. 2016, 56, 1790–1807.Nambeesan, S.U.; Doyle, J.W.; Capps, H.D.; Starns, C.; Scherm, H. E ect of Electronic Cold-PasteurizationTM (ECPTM) on Fruit Quality and Postharvest Diseases during Blueberry Storage. Horticulturae 2018, 4, 25.de São José, J.F.B.; de Andrade, N.J.; Mota, A.; Dantas Vanetti, M.C.; Stringheta, P.; Paes, J.B. Decontamination by ultrasound application in fresh fruits and vegetables. Food Control 2014, 45, 36–50.Rezek, J.A.; Šimunek, M.; Evacic, S.; Markov, K.; Smoljanic, G.; Frece, J. Influence of high power ultrasound on selected moulds, yeasts and Alicyclobacillus acidoterrestris in apple, cranberry and blueberry juice and nectar. Ultrasonics 2018, 83, 3–17.Zhu, J.; Wang, Y.; Li, X.; Li, B.; Liu, S.; Chang, N.; Jie, D.; Ning, C.; Gao, H.; Meng, X. Combined e ect of ultrasound, heat, and pressure on Escherichia coli O157: H7, polyphenol oxidase activity, and anthocyanins in blueberry (Vaccinium corymbosum) juice. Ultrason. Sonochem. 2017, 37, 251–259.Zhang, H.;Wang, S.; Goon, K.; Gilbert, A.; Nguyen Huu, C.;Walsh, M.; Nitin, N.;Wrenn, S.; Tikekar, R.V. Inactivation of foodborne pathogens based on synergistic e ects of ultrasound and natural compounds during fresh produce washing. Ultrason. Sonochem. 2020, 64, 104983.De Simone, N.; Pace, B.; Grieco, F.; Chimienti, M.; Tyibilika, V.; Santoro, V.; Capozzi, V.; Colelli, G.; Spano, G.; Russo, P. Botrytis cinerea and Table Grapes: A Review of the Main Physical, Chemical, and Bio-Based Control Treatments in Post-Harvest. Foods 2020, 9, 1138.Takahashi, M.; Okakura, Y.; Takahashi, H.; Imamura, M. Heat-denatured lysozyme could be a novel disinfectant for reducing hepatitis A virus and murine norovirus on berry fruit. Int. J. Food Microbiol. 2018, 266, 104–108Bambace, M.F.; Alvarez, M.V.; Moreira, M.D.R. Novel functional blueberries: Fructo-oligosaccharides and probiotic lactobacilli incorporated into alginate edible coatings. Food Res. Int. 2019, 122, 653–660.Xu, L.; Zhang, B.; Qin, Y.; Li, F.; Yang, S.; Lu, P.; Wang, L.; Fan, J. Preparation and characterization of antifungal coating films composed of sodium alginate and cyclolipopeptides produced by Bacillus subtilis. Int. J. Biol. Macromol. 2020, 143, 602–609.Pobiega, K.; Igielska, M.;Wnlodarczyk, P.; Gniewosz, M. The use of pullulan coatings with propolis extract to extend the shelf life of blueberry (Vaccinium corymbosum) fruit. Int. J. Food Sci. Technol. 2020, 1–8.Songe, J.; Fan, L.; Forney, C.; Campbell-Palmer, L.; Fillmore, S. Effect of hexanal vapor to control postharvest decay and extend shelf-life of highbush blueberry fruit during controlled atmosphere storage. Can. J. Plant Sci. 2010, 90, 359–366.Crowe, K.M.; Bushway, A.; Davis-dentici, K. Impact of postharvest treatments, chlorine and ozone, coupledwith low-temperature frozen storage on the antimicrobial quality of lowbush blueberries (Vaccinium angustifolium). LWT Food Sci. Technol. 2012, 47, 213–215.Kim, T.J.; Corbitt, M.P.; Silva, J.L.; Wang, D.S.; Jung, Y.; Spencer, B. Optimization of Hot Water Treatment for Removing Microbial Colonies on Fresh Blueberry Surface. J Food Sci. 2011.Kingsley, D.H.; Boyd, G.; Sites, J.; Niemira, B.A. Evaluation of 405-nm monochromatic light for inactivation of Tulane virus on blueberry surfaces. J Appl. Microbiol. 2017, 1017–1022.Horm, K.M.; Davidson, P.M.; Harte, F.M.; Souza, D.H.D. Survival and Inactivation of Human Norovirus Surrogates in Blueberry Juice by High-Pressure Homogenization. Foodborne Pathog. Dis. 2012, 9, 974–979.Bogdanov, T.; Tsonev, I.; Marinova, P.; Benova, E.; Rusanov, K.; Rusanova, M.; Atanassov, I.; Kozáková, Z.; Krˇcma, F. Microwave Plasma Torch Generated in Argon for Small Berries Surface Treatment. Appl. Sci. 2018, 8, 1870.Fan, L.; Martynenko, A.; Doucette, C.; Hughes, T.; Fillmore, S. Microbial Quality and Shelf Life of Blueberry Purée Developed Using Cavitation Technology. J. Food Sci. 2018, 83, 732–739Mohideen, F.W.; Solval, K.M.; Li, J.; Zhang, J.; Chouljenko, A.; Chotiko, A.; Prudente, A.D.; Bankston, J.D.; Sathivel, S. E ect of continuous ultra-sonication on microbial counts and physico-chemical properties of blueberry (Vaccinium corymbosum) juice. LWT Food Sci. Technol. 2015, 60, 563–570.De, J.; Sreedharan, A.; Li, Y.; Gutierrez, A.; Brecht, J.K.; Sargent, S.A.; Schneider, K.R. Comparing the E cacy of Postharvest Cooling Methods to Enhance Fruit Quality and Reduce Salmonella in Artificially Inoculated Southern Highbush Blueberry. Hort Technol. 2019, 1.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf361891https://bonga.unisimon.edu.co/bitstreams/8035d5f4-e60b-4c2b-adef-508c2a9f2c0e/downloadd1ae80bf33aa6069fa39436872feb230MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/fe9ad3fc-8412-4032-b857-a9409e04e243/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/49f46eea-4f42-4766-ba9e-f159c90b76b9/download733bec43a0bf5ade4d97db708e29b185MD53TEXTStrategiesforMicrobialDecontaminationofFresh.pdf.txtStrategiesforMicrobialDecontaminationofFresh.pdf.txtExtracted texttext/plain116050https://bonga.unisimon.edu.co/bitstreams/759337bc-6cd8-4219-b343-9aaa209048c6/downloadbbc3883cc575395ac6a1ed972021d703MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain100885https://bonga.unisimon.edu.co/bitstreams/ba234902-725d-4e48-bf05-da971bc32edf/downloadd639ad1f9763fc7d1360454bbfb93c9fMD56THUMBNAILStrategiesforMicrobialDecontaminationofFresh.pdf.jpgStrategiesforMicrobialDecontaminationofFresh.pdf.jpgGenerated Thumbnailimage/jpeg1592https://bonga.unisimon.edu.co/bitstreams/6acd38a9-953e-44d2-b1f2-3dfea0d53346/download78b5d693147a9ad8be4a572df48e0a16MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5396https://bonga.unisimon.edu.co/bitstreams/8868fbe3-8fa7-4a34-a3f3-8b8d1b7ccfb3/downloadd8ddcf0e474e0a37cc0b07c25b78b6e2MD5720.500.12442/6753oai:bonga.unisimon.edu.co:20.500.12442/67532024-08-14 21:54:34.412http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u