Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis

The aminopeptidase gene from Mesorhizobium SEMIA3007 was cloned and overexpressed in Escherichia coli. The enzyme called MesoAmp exhibited optimum activity at pH 8.5 and 45 °C and was strongly activated by Co2+ and Mn2+. Under these reaction conditions, the enzyme displayed Km and kcat values of 0.2...

Full description

Autores:
Machado Sierra, Elwi
Rangel Pereira, Mariana
Carvalho Maester, Thaís
Soares Gomes-Pepe, Elisangela
Rodas Mendoza, Elkin
Macedo Lemos, Elkin
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1585
Acceso en línea:
http://hdl.handle.net/20.500.12442/1585
Palabra clave:
Mesorhizobium
Aminopeptidase
Microbial Biofilms
Sodium Chloride
Osmosis
Biotechnology
Water-Electrolyte Balance
Organic solvent product
Rights
License
licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_9171419618029168b9f4ee558c886d32
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/1585
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis
title Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis
spellingShingle Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis
Mesorhizobium
Aminopeptidase
Microbial Biofilms
Sodium Chloride
Osmosis
Biotechnology
Water-Electrolyte Balance
Organic solvent product
title_short Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis
title_full Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis
title_fullStr Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis
title_full_unstemmed Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis
title_sort Halotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesis
dc.creator.fl_str_mv Machado Sierra, Elwi
Rangel Pereira, Mariana
Carvalho Maester, Thaís
Soares Gomes-Pepe, Elisangela
Rodas Mendoza, Elkin
Macedo Lemos, Elkin
dc.contributor.author.none.fl_str_mv Machado Sierra, Elwi
Rangel Pereira, Mariana
Carvalho Maester, Thaís
Soares Gomes-Pepe, Elisangela
Rodas Mendoza, Elkin
Macedo Lemos, Elkin
dc.subject.eng.fl_str_mv Mesorhizobium
Aminopeptidase
Microbial Biofilms
Sodium Chloride
Osmosis
Biotechnology
Water-Electrolyte Balance
Organic solvent product
topic Mesorhizobium
Aminopeptidase
Microbial Biofilms
Sodium Chloride
Osmosis
Biotechnology
Water-Electrolyte Balance
Organic solvent product
description The aminopeptidase gene from Mesorhizobium SEMIA3007 was cloned and overexpressed in Escherichia coli. The enzyme called MesoAmp exhibited optimum activity at pH 8.5 and 45 °C and was strongly activated by Co2+ and Mn2+. Under these reaction conditions, the enzyme displayed Km and kcat values of 0.2364 ± 0.018 mM and 712.1 ± 88.12 s−1, respectively. Additionally, the enzyme showed remarkable stability in organic solvents and was active at high concentrations of NaCl, suggesting that the enzyme might be suitable for use in biotechnology. MesoAmp is responsible for 40% of the organism’s aminopeptidase activity. However, the enzyme’s absence does not affect bacterial growth in synthetic broth, although it interfered with biofilm synthesis and osmoregulation. To the best of our knowledge, this report describes the first detailed characterization of aminopeptidase from Mesorhizobium and suggests its importance in biofilm formation and osmotic stress tolerance. In summary, this work lays the foundation for potential biotechnological applications and/or the development of environmentally friendly technologies and describes the first solvent- and halo-tolerant aminopeptidases identified from the Mesorhizobium genus and its importance in bacterial metabolism.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-09-06
dc.date.accessioned.none.fl_str_mv 2018-02-05T14:41:30Z
dc.date.available.none.fl_str_mv 2018-02-05T14:41:30Z
dc.type.spa.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 20452322
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/1585
identifier_str_mv 20452322
url http://hdl.handle.net/20.500.12442/1585
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Springer
dc.source.eng.fl_str_mv Scientific Reports
dc.source.none.fl_str_mv Vol. 7, No. 10684 (2017)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv DOI:10.1038/s41598-017-10932-8
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/035fcd91-23ae-48a1-b57e-ff7057d1501f/download
https://bonga.unisimon.edu.co/bitstreams/9d01a6d3-e6d7-483b-8317-1d4fd0cf0156/download
https://bonga.unisimon.edu.co/bitstreams/b3fa0171-4214-4425-a104-b688bc711a7d/download
https://bonga.unisimon.edu.co/bitstreams/33d7b425-ff47-4198-9da6-d333f6545bdc/download
https://bonga.unisimon.edu.co/bitstreams/71f7a1e8-75ad-4b59-acaf-d6387e1cb68a/download
https://bonga.unisimon.edu.co/bitstreams/da005348-a515-4a85-ad51-0bc88eab603b/download
bitstream.checksum.fl_str_mv b2ca57fbd56ea27d399a02bd0a56ada9
8a4605be74aa9ea9d79846c1fba20a33
83777acb9290acb602713215c23f9fe8
37b65189f6ace8fec270cd0f68300266
208507ad17fd92410c691812efecda40
7a1e9ddcd2afa0e142e2b899e6d1e56d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100487160266752
spelling licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Machado Sierra, Elwic4e7bb2a-d0dc-4b8b-8222-f6b6daf5b678Rangel Pereira, Marianab52edd75-ac95-45c0-b964-eeafdca55593Carvalho Maester, Thaís78cfda06-ac7e-46e8-a299-8668a67e542fSoares Gomes-Pepe, Elisangela90d1b92d-918c-4379-9f7b-4c24850a2c6eRodas Mendoza, Elkin9b1dd5a9-d1be-424a-b187-f0bf695bf26bMacedo Lemos, Elkin06af8b10-9b0b-450a-a833-d6e6018753192018-02-05T14:41:30Z2018-02-05T14:41:30Z2017-09-0620452322http://hdl.handle.net/20.500.12442/1585The aminopeptidase gene from Mesorhizobium SEMIA3007 was cloned and overexpressed in Escherichia coli. The enzyme called MesoAmp exhibited optimum activity at pH 8.5 and 45 °C and was strongly activated by Co2+ and Mn2+. Under these reaction conditions, the enzyme displayed Km and kcat values of 0.2364 ± 0.018 mM and 712.1 ± 88.12 s−1, respectively. Additionally, the enzyme showed remarkable stability in organic solvents and was active at high concentrations of NaCl, suggesting that the enzyme might be suitable for use in biotechnology. MesoAmp is responsible for 40% of the organism’s aminopeptidase activity. However, the enzyme’s absence does not affect bacterial growth in synthetic broth, although it interfered with biofilm synthesis and osmoregulation. To the best of our knowledge, this report describes the first detailed characterization of aminopeptidase from Mesorhizobium and suggests its importance in biofilm formation and osmotic stress tolerance. In summary, this work lays the foundation for potential biotechnological applications and/or the development of environmentally friendly technologies and describes the first solvent- and halo-tolerant aminopeptidases identified from the Mesorhizobium genus and its importance in bacterial metabolism.engSpringerScientific ReportsVol. 7, No. 10684 (2017)DOI:10.1038/s41598-017-10932-8MesorhizobiumAminopeptidaseMicrobial BiofilmsSodium ChlorideOsmosisBiotechnologyWater-Electrolyte BalanceOrganic solvent productHalotolerant aminopeptidase M29 from Mesorhizobium SEMIA 3007 with biotechnological potential and its impact on biofilm synthesisarticlehttp://purl.org/coar/resource_type/c_6501Ghobakhlou, A.-F., Johnston, A., Harris, L., Antoun, H. & Laberge, S. Microarray transcriptional profiling of Arctic Mesorhizobium strain N33 at low temperature provides insights into cold adaption strategies. BMC Genomics 16, 383 (2015).Krick, A. et al. A Marine Mesorhizobium sp. Produces Structurally Novel Long-Chain N-Acyl-L-Homoserine Lactones. Appl. Environ. Microbiol. 73, 3587–3594 (2007).Diouf, F. et al. Genetic and Genomic Diversity Studies of Acacia Symbionts in Senegal Reveal New Species of Mesorhizobium with a Putative Geographical Pattern. PLoS One 10, e0117667 (2015).Teng, Y. et al. Isolation of the PCB-degrading bacteria Mesorhizobium sp. ZY1 and its combined remediation with Astragalus sinicus L. for contaminated soil. Int. J. Phytoremediation 20 (2015).Venkatachalam, G., Nandakumar, V., Suresh, G. & Doble, M. Characterization and applications of cyclic β-(1,2)-glucan produced from R. meliloti. RSC Adv. 4, 11393 (2014).Uechi, K., Takata, G., Fukai, Y., Yoshihara, A. & Morimoto, K. Gene Cloning and Characterization of L-Ribulose 3-epimerase from Mesorhizobium loti and its Application to Rare Sugar Production. Biosci. Biotechnol. Biochem. 77, 511–515 (2013).Kim, J. et al. Cloning and characterization of a novel β-transaminase from Mesorhizobium sp. strain LUK: A new biocatalyst for the synthesis of enantiomerically pure??-amino acids. Appl. Environ. Microbiol. 73, 1772–1782 (2007).Prasad, M. P. & Sethi, R. Optimization of cellulase production from a novel bacterial isolate Mesorhizobium sp. from marine source. J. Enzym. Res. 4, 39–45 (2013).Takata, G. et al. Characterization of Mesorhizobium loti L -Rhamnose Isomerase and Its Application to L -Talose Production. Biosci. Biotechnol. Biochem. 75, 1006–1009 (2011).Mugo, A. N. et al. Crystal structure of pyridoxine 4-oxidase from Mesorhizobium loti. Biochim. Biophys. Acta 1834, 953–63 (2013).Huang, W. et al. The Structure and Enzyme Characteristics of a Recombinant Leucine Aminopeptidase rLap1 from Aspergillus sojae and Its Application in Debittering. Appl. Biochem. Biotechnol. 177, 190–206 (2015).Thomas, S., Besset, C., Courtin, P. & Rul, F. The role of aminopeptidase PepS in the growth of Streptococcus thermophilus is not restricted to nitrogen nutrition. J. Appl. Microbiol. 108, 148–157 (2010).Cheng, C. et al. Aminopeptidase T of M29 Family Acts as A Novel Intracellular Virulence Factor for Listeria monocytogenes Infection. Sci. Rep. 5, 17370 (2015).Hernández-Moreno, A. V. et al. Kinetics and conformational stability studies of recombinant leucine aminopeptidase. Int. J. Biol. Macromol. 64, 306–312 (2014).Ramírez-Zavala, B., Mercado-Flores, Y., Hernández-Rodríguez, C. & Villa-Tanaca, L. Purification and characterization of a lysine aminopeptidase from Kluyveromyces marxianus. FEMS Microbiol. Lett. 235, 369–375 (2004).Ding, G., Zhou, N. & Tian, Y. Over-Expression of a Proline Specific Aminopeptidase from Aspergillus oryzae JN-412 and Its Application in Collagen Degradation. Appl. Biochem. Biotechnol. 173, 1765–1777 (2014).Rawlings, N. D., Waller, M., Barrett, A. J. & Bateman, A. MEROPS: The database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res. 42, 343–350 (2014).Rawlings, N. D. & Barrett, A. J. Evolutionary families of metallopeptidases. Methods Enzymol. 248, 183–228 (1995).Bailey, S., Ward, D., Middleton, R., Grossmann, J. G. & Zambryski, P. C. Agrobacterium tumefaciens VirB8 structure reveals potential protein-protein interaction sites. Proc. Natl. Acad. Sci. 103, 2582–2587 (2006).Wang, T.-F., Lin, M.-G., Lo, H.-F., Chi, M.-C. & Lin, L.-L. Biophysical characterization of a recombinant aminopeptidase II from the thermophilic bacterium Bacillus stearothermophilus. J. Biol. Phys. 40, 25–40 (2014).Zhuo, S. & Dixon, J. E. Effects of sulfhydryl regents on the activity of lambda Ser/Thr phosphoprotein phosphatase and inhibition of the enzyme by zinc ion. Protein Eng. 10, 1445–52 (1997).Mukhopadhyay, A. Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends Microbiol. 23, 498–508 (2015).Sardessai, Y. & Bhosle, S. Tolerance of bacteria to organic solvents. Res. Microbiol. 153, 263–268 (2002).Bertin, P. B. et al. The thermophilic, homohexameric aminopeptidase of Borrelia burgdorferi is a member of the M29 family of metallopeptidases. Infect. Immun. 73, 2253–2261 (2005).Fernandez-Espla, M. D. & Rul, F. PepS from Streptococcus thermophilus: A new member of the aminopeptidase T family of thermophilic bacteria. Eur. J. Biochem. 263, 502–510 (1999).Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43, D213–D221 (2015).Ta, H. M. et al. Structure-based elucidation of the regulatory mechanism for aminopeptidase activity. Acta Crystallogr. Sect. D Biol. Crystallogr. 69, 1738–1747 (2013).Rul, F. In Handbook of Proteolytic Enzymes (eds Rawlings, N. D. & Salvesen, G.) 1677–1678 (Academic Press publications - Elsevier). doi:10.1016/B978-0-12-382219-2.00380-X (2013).Plotka, M. et al. Novel Highly Thermostable Endolysin from Thermus scotoductus MAT2119 Bacteriophage Ph2119 with Amino Acid Sequence Similarity to Eukaryotic Peptidoglycan Recognition Proteins. Appl. Environ. Microbiol. 80, 886–895 (2014).Vieille, C., Zeikus, G. J. & Vieille, C. Thermostability Hyperthermophilic Enzymes: Sources, Uses, and Molecular Mechanisms for Thermostability. Microbiol. Mol. Biol. Rev. 65, 1–43 (2001).Merheb-Dini, C. et al. Biochemical and functional characterization of a metalloprotease from the thermophilic fungus thermoascus aurantiacus. J. Agric. Food Chem. 57, 9210–9217 (2009).Handbook of Proteolytic Enzymes. Protein Science 8, (Academic Press, 2013).Kuo, L.-Y., Hwang, G.-Y., Lai, Y.-J., Yang, S.-L. & Lin, L.-L. Overexpression, purification, and characterization of the recombinant leucine aminopeptidase II of Bacillus stearothermophilus. Curr. Microbiol. 47, 40–45 (2003).Dong, L. et al. The leucyl aminopeptidase from Helicobacter pylori is an allosteric enzyme. Microbiology 151, 2017–2023 (2005).Wang, F. et al. Biochemical Properties of Recombinant Leucine Aminopeptidase II from Bacillus stearothermophilus and Potential Applications in the Hydrolysis of Chinese Anchovy (Engraulis japonicus) Proteins. J. Agric. Food Chem. 60, 165–172 (2012).Zhu, X. et al. Mechanism of peptide hydrolysis by co-catalytic metal centers containing leucine aminopeptidase enzyme: A DFT approach. J. Biol. Inorg. Chem. 17, 209–222 (2012).Doukyu, N. & Ogino, H. Organic solvent-tolerant enzymes. Biochem. Eng. J. 48, 270–282 (2010).Gaur, R., Grover, T., Sharma, R., Kapoor, S. & Khare, S. K. Purification and characterization of a solvent stable aminopeptidase from Pseudomonas aeruginosa: Cloning and analysis of aminopeptidase gene conferring solvent stability. Process Biochem. 45, 757–764 (2010).Chang, A. et al. BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res. 43, D439–46 (2015).Carroll, R. K. et al. Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus. Microbes Infect. 14, 989–999 (2012).Carroll, R. K. et al. The Staphylococcus aureus leucine aminopeptidase is localized to the bacterial cytosol and demonstrates a broad substrate range that extends beyond leucine. Biol. Chem. 394, 1199–1216 (2013).Singh, A. K., Singh, R., Tomar, D., Pandya, C. D. & Singh, R. The leucine aminopeptidase of Staphylococcus aureus is secreted and contributes to biofilm formation. Int. J. Infect. Dis. 16, e375–e381 (2012).Miller, C. G. & Green, L. Degradation of abnormal proteins in peptidase-deficient mutants of Salmonella typhimurium. J. Bacteriol. 147, 925–30 (1981).Charlier, D. et al. Mutational analysis of Escherichia coli PepA, a multifunctional DNA-binding aminopeptidase 1 1 Edited by M. Yaniv. J. Mol. Biol. 302, 409–424 (2000).Kleine, L. L., Monnet, V., Pechoux, C. & Trubuil, A. Role of bacterial peptidase F inferred by statistical analysis and further experimental validation. HFSP J. 2, 29–41 (2008).Beenken, K. E., Blevins, J. S. & Smeltzer, M. S. Mutation of sarA in Staphylococcus aureus Limits Biofilm Formation. Infect. Immun. 71, 4206–4211 (2003).Díaz-Pérez, A. L., Díaz-Pérez, C. & Campos-García, J. Bacterial l-leucine catabolism as a source of secondary metabolites. Rev. Environ. Sci. Biotechnol. 15, 1–29 (2015).Measures, J. Role of amino acids in osmoregulation of non-halophilic bacteria. Nature 257, 398–400 (1975).Bharti, N., Yadav, D., Barnawal, D., Maji, D. & Kalra, A. Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J. Microbiol. Biotechnol. 29, 379–387 (2013).Li, W., Zhou, R. & Mu, Y. Salting effects on protein components in aqueous NaCl and urea solutions: Toward understanding of ureainduced protein denaturation. J. Phys. Chem. B 116, 1446–1451 (2012).Gong, J.-S. et al. Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl. Microbiol. Biotechnol. 97, 6603–6611 (2013).Gong, J.-S. et al. Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl. Microbiol. Biotechnol. 97, 6603–6611 (2013).Xi, H., Tian, Y., Zhou, N., Zhou, Z. & Shen, W. Characterization of an N -glycosylated Bacillus subtilis leucine aminopeptidase expressed in Pichia pastoris. J. Basic Microbiol. 55, 236–246 (2015).Setyorini, E., Kim, Y.-J., Takenaka, S., Murakami, S. & Aoki, K. Purification and characterization of a halotolerant intracellular protease fromBacillus subtilis strain FP-133. J. Basic Microbiol. 46, 294–304 (2006).Aziz, R. K. et al. The RAST Server: Rapid Annotations using Subsystems Technology. BMC Genomics 9, 75 (2008).Kishi, L. T., Fernandes, C. C., Omori, W. P., Campanharo, J. C. & Macedo Lemos, E. Reclassification of the taxonomic status of SEMIA3007 isolated in Mexico B-11A Mex as Rhizobium leguminosarum bv. viceae by bioinformatic tools. BMC Microbiol. 16, 1–8 (2016).Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–D214 (2014).Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–80 (1994).Ashkenazy, H., Erez, E., Martz, E. & Pupko, T. & Ben-Tal, N. ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 38, 529–533 (2010).Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011).Fiser, A., Sali, A. & Šali, A. MODELLER: Generation and Refinement of Homology-Based Protein Structure Models. Methods Enzymol. 374, 461–491 (2003).Odintsov, S. G., Sabała, I., Bourenkov, G., Rybin, V. & Bochtler, M. Substrate access to the active sites in aminopeptidase T, a representative of a new metallopeptidase clan. J. Mol. Biol. 354, 403–412 (2005).Sabała, G. E., Bourenkov, I. G., Rybin, V. & Bochtler, M. Staphylococcus aureus aminopeptidase S is a founding member of a new peptidase clan. J. Biol. Chem. 280, 27792–27799 (2005).McGuffin, L. J., Buenavista, M. T. & Roche, D. B. The ModFOLD4 server for the quality assessment of 3D protein models. Nucleic Acids Res. 41, W368–W372 (2013).Pierce, B. G. et al. Structural bioinformatics ZDOCK server: interactive docking prediction of protein – protein complexes and symmetric multimers. Bioinformatics 30, 1771–1773 (2014).Oliveira, S. H. P. et al. KVFinder: steered identification of protein cavities as a PyMOL plugin. BMC Bioinformatics 15, 197 (2014).DeLano, W. L. The PyMOL Molecular Graphics System, Version 1.7.4 Schrödinger, LLC (2004).Pereira, M. R., Mercaldi, G. F., Maester, T. C., Balan, A. & De Macedo Lemos, E. G. Est16, a new esterase isolated from a metagenomic library of a microbial consortium specializing in diesel oil degradation. PLoS One 10, 1–16 (2015).Maester, T. C., Pereira, M. R., Machado Sierra, E. G., Balan, A. & de Macedo Lemos, E. G. Characterization of EST3: a metagenomederived esterase with suitable properties for biotechnological applications. Appl. Microbiol. Biotechnol. 100, 5815–5827 (2016).Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5 (1970).Greenfield, N. J. Using circular dichroism collected as a funcion of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 1, 2527–2535 (2009).West, L., Yang, D. & Stephens, C. Use of the Caulobacter crescentus Genome Sequence To Develop a Method for Systematic Genetic Mapping. J. Bacteriol. 184, 2155–2166 (2002).Liu, Z. et al. Efficient Construction of Large Genomic Deletion in Agrobacterium tumefaciens by Combination of Cre/loxP System and Triple Recombineering. Curr. Microbiol. 72, 465–472 (2016).Beringer, J. E. R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 84, 188–98 (1974).Oliveira, N. M. et al. Correction: Biofilm Formation As a Response to Ecological Competition. PloS Biol. 13, e1002232 (2015).Hwang, G. Y., Kuo, L. Y., Tsai, M. R., Yang, S. L. & Lin, L. L. Histidines 345 and 378 of Bacillus stearotheromophilus leucine aminopeptidase II are essential for the catalytic activity of the enzyme. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 87, 355–359 (2005).Jankiewicz, U. & Wnuk, a An activated by cobalt alkaline aminopeptidase from Bacillus mycoides. Appl. Biochem. Microbiol. 47, 136–143 (2011).Khan, A. R., Nirasawa, S., Kaneko, S., Shimonishi, T. & Hayashi, K. Characterization of a solvent resistant and thermostable aminopeptidase from the hyperthermophillic bacterium, Aquifex aeolicus. Enzyme Microb. Technol. 27, 83–88 (2000).Chung, D.-M., Lee, G., Chun, S.-S., Chung, Y. & Chun, H. Effect of NaCl on Hydrolytic Activity of Leucine Aminopeptidase from Bacillus sp. N2. J. Life Sci. 21, 761–765 (2011).Lee, G., Chun, S., Kho, Y. & Chun, H. Purification and properties of an extracellular leucine aminopeptidase from the Bacillus sp. N2. J. Appl. Microbiol. 85, 561–566 (1998).ORIGINALPDF.pdfPDF.pdfFormato Pdf texto completoapplication/pdf1765996https://bonga.unisimon.edu.co/bitstreams/035fcd91-23ae-48a1-b57e-ff7057d1501f/downloadb2ca57fbd56ea27d399a02bd0a56ada9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/9d01a6d3-e6d7-483b-8317-1d4fd0cf0156/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXT2017_Halotolerant (1).pdf.txt2017_Halotolerant (1).pdf.txtExtracted texttext/plain67277https://bonga.unisimon.edu.co/bitstreams/b3fa0171-4214-4425-a104-b688bc711a7d/download83777acb9290acb602713215c23f9fe8MD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain70299https://bonga.unisimon.edu.co/bitstreams/33d7b425-ff47-4198-9da6-d333f6545bdc/download37b65189f6ace8fec270cd0f68300266MD55THUMBNAIL2017_Halotolerant (1).pdf.jpg2017_Halotolerant (1).pdf.jpgGenerated Thumbnailimage/jpeg1921https://bonga.unisimon.edu.co/bitstreams/71f7a1e8-75ad-4b59-acaf-d6387e1cb68a/download208507ad17fd92410c691812efecda40MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg6672https://bonga.unisimon.edu.co/bitstreams/da005348-a515-4a85-ad51-0bc88eab603b/download7a1e9ddcd2afa0e142e2b899e6d1e56dMD5620.500.12442/1585oai:bonga.unisimon.edu.co:20.500.12442/15852024-08-14 21:52:58.801open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=