Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable

Salmonella spp. es una de las principales bacterias involucradas en enfermedades transmitidas por alimentos. De acuerdo con el National Outbreak Reporting System (NORS) en Estados Unidos fueron reportados entre 2018-2020, 57,649 brotes de los cuales 244 brotes eran causados por Salmonella spp., ocas...

Full description

Autores:
Anaya De La Cruz, Donna
Araque España, Yanelis
De La Rosa Rada, Enelvis
Rodríguez Alvarado, Melanie
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
spa
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/11718
Acceso en línea:
https://hdl.handle.net/20.500.12442/11718
Palabra clave:
Acero inoxidable
Salmonella spp
Biopelícula
Control
Desinfección
Erradicación
Eliminación
Stainless steel
Salmonella spp
Biofilm
Control
Disinfection
Eradication
Elimination
Rights
restrictedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_81aecbd52ad374ea542770cac632b98f
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/11718
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.spa.fl_str_mv Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable
title Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable
spellingShingle Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable
Acero inoxidable
Salmonella spp
Biopelícula
Control
Desinfección
Erradicación
Eliminación
Stainless steel
Salmonella spp
Biofilm
Control
Disinfection
Eradication
Elimination
title_short Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable
title_full Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable
title_fullStr Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable
title_full_unstemmed Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable
title_sort Estrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidable
dc.creator.fl_str_mv Anaya De La Cruz, Donna
Araque España, Yanelis
De La Rosa Rada, Enelvis
Rodríguez Alvarado, Melanie
dc.contributor.advisor.none.fl_str_mv Pérez Lavalle, Liliana
Soto Valera, Zamira
dc.contributor.author.none.fl_str_mv Anaya De La Cruz, Donna
Araque España, Yanelis
De La Rosa Rada, Enelvis
Rodríguez Alvarado, Melanie
dc.subject.spa.fl_str_mv Acero inoxidable
Salmonella spp
Biopelícula
Control
Desinfección
Erradicación
Eliminación
topic Acero inoxidable
Salmonella spp
Biopelícula
Control
Desinfección
Erradicación
Eliminación
Stainless steel
Salmonella spp
Biofilm
Control
Disinfection
Eradication
Elimination
dc.subject.eng.fl_str_mv Stainless steel
Salmonella spp
Biofilm
Control
Disinfection
Eradication
Elimination
description Salmonella spp. es una de las principales bacterias involucradas en enfermedades transmitidas por alimentos. De acuerdo con el National Outbreak Reporting System (NORS) en Estados Unidos fueron reportados entre 2018-2020, 57,649 brotes de los cuales 244 brotes eran causados por Salmonella spp., ocasionando 5.532 enfermedades, 1.037 hospitalizaciones y 6 fallecidos (CDC, 2022). Esta bacteria es capaz de formar biopelículas; la cual es una comunidad de microorganismos con células unidas irreversiblemente a un sustrato, e incrustadas en una matriz de sustancias poliméricas extracelulares (EPS) (Donlan & Costerton, 2002). Las biopelículas brindan protección frente a agentes desinfectantes y diferentes tipos de estrés encontrados en ambientes de procesamiento de alimentos (H. Steenackers et al., 2011). Diferentes estudios han demostrado la capacidad de Salmonella spp. de formar biopelículas en acero inoxidable, el cual es una de las superficies abióticas más utilizadas en la industria alimentaria por su gran resistencia (Lee et al. 2020). En esta línea, se ha evidenciado que biopelículas de Salmonella spp. formadas en acero inoxidable son difíciles de eliminar con desinfectantes comúnmente utilizados en la industria alimentaria (H. Steenackers et al., 2011).
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-16T22:43:11Z
dc.date.available.none.fl_str_mv 2023-01-16T22:43:11Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.spa.spa.fl_str_mv Trabajo de grado - pregrado
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/20.500.12442/11718
url https://hdl.handle.net/20.500.12442/11718
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.spa.fl_str_mv Ediciones Universidad Simón Bolívar
Facultad de Ciencias Básicas y Biomédicas
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/a2676136-03e4-44ad-b6d9-2e08b9d9bd66/download
https://bonga.unisimon.edu.co/bitstreams/bb25cd52-83f6-488c-833d-6a20c75d337d/download
https://bonga.unisimon.edu.co/bitstreams/83346a8a-9a48-4f0a-8570-8c1c73607cd0/download
https://bonga.unisimon.edu.co/bitstreams/8c4a40cb-d7c9-4cde-80ca-c14afb8dd5fe/download
https://bonga.unisimon.edu.co/bitstreams/10cda3b6-7ded-4100-9841-db053340153e/download
https://bonga.unisimon.edu.co/bitstreams/7125a1d2-4dda-48de-af36-096860a696d3/download
https://bonga.unisimon.edu.co/bitstreams/30c676d1-76c2-42c2-9439-331508246a46/download
https://bonga.unisimon.edu.co/bitstreams/14bd1755-6989-467e-950c-be15f0df20c5/download
https://bonga.unisimon.edu.co/bitstreams/6a2583fe-5971-4cdf-9aa1-51621f40e219/download
https://bonga.unisimon.edu.co/bitstreams/7decfd31-6903-4c0a-aaef-4c52f94ec5db/download
https://bonga.unisimon.edu.co/bitstreams/53a06c12-256f-4ed8-b9e5-62b5d471d724/download
https://bonga.unisimon.edu.co/bitstreams/5b1efd92-9cad-467e-be73-badfa41ae311/download
https://bonga.unisimon.edu.co/bitstreams/e04533be-9c64-46bb-913b-b4fee7e3309d/download
https://bonga.unisimon.edu.co/bitstreams/3b3728cc-b290-40c3-a7e3-f71ade510f7d/download
https://bonga.unisimon.edu.co/bitstreams/4cad2260-cbf8-405b-8563-a85abe9562b3/download
https://bonga.unisimon.edu.co/bitstreams/aac1117e-d2c4-4e99-aa92-f7ad4235e6e7/download
bitstream.checksum.fl_str_mv deb7a03e7c2415bc2ccfa4eb4376d5da
e39888fdecee833fb90f8588ccf1bee4
4460e5956bc1d1639be9ae6146a50347
2a1661e5960a7bab4fd8dda692fb677c
7fec2ca6cfc2ac3e3904ac67131ea21a
f37c226f697807517893dae353fe8ef1
7fec2ca6cfc2ac3e3904ac67131ea21a
f37c226f697807517893dae353fe8ef1
f37c226f697807517893dae353fe8ef1
7fec2ca6cfc2ac3e3904ac67131ea21a
a3f49370ec8b182c138f11e48f51fd31
e5cd3acdd6ead260f36d34b5d9dc6d8c
a3f49370ec8b182c138f11e48f51fd31
e5cd3acdd6ead260f36d34b5d9dc6d8c
e5cd3acdd6ead260f36d34b5d9dc6d8c
a3f49370ec8b182c138f11e48f51fd31
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100529815289856
spelling Pérez Lavalle, LilianaSoto Valera, ZamiraAnaya De La Cruz, Donna235b51e2-5dde-4bd7-9c2e-daf954694492Araque España, Yanelis44d5e0f3-f87b-42e4-82a9-3a44639d7cf9De La Rosa Rada, Enelvisc9eafea4-090b-4fe9-ad82-2dc6174f76c0Rodríguez Alvarado, Melanie926afeb0-76be-4f60-aebb-82e958555ddc2023-01-16T22:43:11Z2023-01-16T22:43:11Z2022https://hdl.handle.net/20.500.12442/11718Salmonella spp. es una de las principales bacterias involucradas en enfermedades transmitidas por alimentos. De acuerdo con el National Outbreak Reporting System (NORS) en Estados Unidos fueron reportados entre 2018-2020, 57,649 brotes de los cuales 244 brotes eran causados por Salmonella spp., ocasionando 5.532 enfermedades, 1.037 hospitalizaciones y 6 fallecidos (CDC, 2022). Esta bacteria es capaz de formar biopelículas; la cual es una comunidad de microorganismos con células unidas irreversiblemente a un sustrato, e incrustadas en una matriz de sustancias poliméricas extracelulares (EPS) (Donlan & Costerton, 2002). Las biopelículas brindan protección frente a agentes desinfectantes y diferentes tipos de estrés encontrados en ambientes de procesamiento de alimentos (H. Steenackers et al., 2011). Diferentes estudios han demostrado la capacidad de Salmonella spp. de formar biopelículas en acero inoxidable, el cual es una de las superficies abióticas más utilizadas en la industria alimentaria por su gran resistencia (Lee et al. 2020). En esta línea, se ha evidenciado que biopelículas de Salmonella spp. formadas en acero inoxidable son difíciles de eliminar con desinfectantes comúnmente utilizados en la industria alimentaria (H. Steenackers et al., 2011).Salmonella spp. it is one of the main bacteria involved in foodborne illnesses. According to the National Outbreak Reporting System (NORS) in the United States, between 2018-2020, 57,649 outbreaks were reported, of which 244 outbreaks were caused by Salmonella spp., causing 5,532 illnesses, 1,037 hospitalizations, and 6 deaths (CDC, 2022). This bacterium is capable of forming biofilms; which is a community of microorganisms with cells irreversibly attached to a substrate, and embedded in a matrix of extracellular polymeric substances (EPS) (Donlan & Costerton, 2002). Biofilms provide protection against sanitizing agents and different types of stress found in food processing environments (H. Steenackers et al., 2011). Different studies have shown the ability of Salmonella spp. to form biofilms on stainless steel, which is one of the most used abiotic surfaces in the food industry due to its great resistance (Lee et al. 2020). Along these lines, it has been shown that Salmonella spp. formed in stainless steel are difficult to remove with disinfectants commonly used in the food industry (H. Steenackers et al., 2011).pdfspaEdiciones Universidad Simón BolívarFacultad de Ciencias Básicas y BiomédicasAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecAcero inoxidableSalmonella sppBiopelículaControlDesinfecciónErradicaciónEliminaciónStainless steelSalmonella sppBiofilmControlDisinfectionEradicationEliminationEstrategias para el control de biopelículas de Salmonella spp formadas en acero inoxidableinfo:eu-repo/semantics/bachelorThesisTrabajo de grado - pregradohttp://purl.org/coar/resource_type/c_7a1fArtés, F., Gómez, P., Aguayo, E., Escalona, V., & Artés-Hernández, F. (2009). Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biology and Technology, 51(3), 287–296Brasão, S.C., Melo, R.T.d., Prado, R.R., Monteiro, G.P., Santos, F.A.L.d., Braz, R.F., Rossi, D.A. (2021). Characterization and control of biofilms of Salmonella Minnesota of poultry origin. Food Biosci. 2021, 39, 100811Byun, K.H., Sang, H.H., Yoon, J.W., Park, S.H & Ha, S.D. (2021). “Efficacy of Chlorine-Based Disinfectants (Sodium Hypochlorite and Chlorine Dioxide) on Salmonella Enteritidis Planktonic Cells, Biofilms on Food Contact Surfaces and Chicken Skin.” Food Control 123 (September 2020): 1–8. https://doi.org/10.1016/j.foodcont.2020.107838Byun, K.-H., Na, K. W., Ashrafudoulla, M., Choi, M. W., Han, S. H., Kang, I., Park, S. H., & Ha, S.-D. (2022). Combination treatment of peroxyacetic acid or lactic acid with UV-C to control Salmonella Enteritidis biofilms on food contact surface and chicken skin. Food Microbiology, 102, 103906.Centers for Disease Control and Prevention. (2022) Centers for Disease Control and Prevention National outbreak reporting system (NORS) https://wwwn.cdc.gov/norsdashboard/ (2022).Corcoran, M., Morris, D., de Lappe, N., O’Connor, J., Lalor, P., Dockery, P., & Cormican, M. (2014). Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Applied and Environmental Microbiology, 80(4), 1507–1514. https://doi.org/10.1128/AEM.03109-13Dhakal, Janak, Chander S. Sharma, Ramakrishna Nannapaneni, Christopher D. McDaniel, Taejo Kim, & Aaron Kiess. (2019). “Effect of Chlorine-Induced Sublethal Oxidative Stress on the Biofilm-Forming Ability of Salmonella at Different Temperatures, Nutrient Conditions, and Substrates.” Journal of Food Protection 82 (1): 78–92. https://doi.org/10.4315/0362-028X.JFP-18-119.Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167–193. https://doi.org/10.1128/CMR.15.2.167-193.2002EFSA & ECDC. (2019). The European Union One Health 2018 Zoonoses Report. EFSA journal 2019; 17(12):5926. https://doi.org/10.2903/j.efsa.2019.5926El-Tarabily, Khaled A., Mohamed T. El-Saadony, Mahmoud Alagawany, Muhammad Arif, Gaber E. Batiha, Asmaa F. Khafaga, Hamada A.M. Elwan, Shaaban S. Elnesr, and Mohamed E. Abd El-Hack. (2021). “Using Essential Oils to Overcome Bacterial Biofilm Formation and Their Antimicrobial Resistance.” Saudi Journal of Biological Sciences 28 (9): 5145–56. https://doi.org/10.1016/j.sjbs.2021.05.033.Endersen, L & Coffey, A. (2020). The use of bacteriophages for food safety. Curr Opin Food Sci 36:1–8. https://doi.org/10.1016/j.cofs.2020.10.006Falleh, H., Jemaa, M.B., Saada, M., & Ksouri, R. (2020). “Essential Oils: A Promising Eco-Friendly Food Preservative.” Food Chemistry 330 (June): 127268. https://doi.org/10.1016/j.foodchem.2020.127268Fan, Q., He, Q., Zhang, T., Song, W., Sheng, Q., Yuan, Y., & Yue, T. (2022). “Antibiofilm Potential of Lactobionic Acid against Salmonella Typhimurium.” LWT 162 (June). https://doi.org/10.1016/j.lwt.2022.113461.Gabriel, A.A., Ballesteros, M.P., Mendel, D.R., Tumlos, R.B & Ramos, H.J. (2018). “Elimination of Salmonella enterica on Common Stainless Steel Food Contact Surfaces Using UV-C and Atmospheric Pressure Plasma Jet.” Food Control 86 (April): 90–100. https://doi.org/10.1016/j.foodcont.2017.11.011.Hu, H., Cai, L., Dong, Y., Wang, H., Xu, X., & Zhou, G. (2019). “Modeling the Degradation of Acidic Electrolyzed Water and Its Ability to Disinfect a Dual-Species Biofilm.” LWT 104 (May): 159–64. https://doi.org/10.1016/j.lwt.2019.01.029.Islam, M.S., Zhou, Y., Liang, L., Nime, I., Liu, K., Yan, T., Wang, X,, Li, J. (2019). Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses. 2019 Sep 10;11(9):841. doi: 10.3390/v11090841. PMID: 31510005; PMCID: PMC6784009.Da Young, J & Ha, Jae-Won. (2021). “Synergistic Interaction of Tap Water-Based Neutral Electrolyzed Water Combined with UVA Irradiation to Enhance Microbial Inactivation on Stainless Steel.” Food Research International 150 (December). https://doi.org/10.1016/j.foodres.2021.110773Joseph, B., Otta, S. K., Karunasagar, I., & Karunasagar, I. (2001). Biofilm formation by salmonella spp. on food contact surfaces and their sensitivity to sanitizers. International journal of food microbiology, 64(3), 367–372. https://doi.org/10.1016/s0168-1605(00)00466-9Katsigiannis, A.S., Bayliss, D.L & Walsh, J.M. (2021). “Cold Plasma Decontamination of Stainless Steel Food Processing Surfaces Assessed Using an Industrial Disinfection Protocol.” Food Control 121 (March). https://doi.org/10.1016/j.foodcont.2020.107543.Kim, Min Jeong, and Joo Sung Kim. (2022). “Enhanced Inactivation of Salmonella Enterica Enteritidis Biofilms on the Stainless Steel Surface by Proteinase K in the Combination with Chlorine.” Food Control 132 (February). https://doi.org/10.1016/j.foodcont.2021.108519.Kim, N.N., Kim, W.J., & Kang, S. (2019). Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control. DOI:10.1016/J.FOODCONT.2018.11.004Lee, K-Hoon., Lee, J.Y., Roy, P.K., Md Furkanur Rahaman Mizan., Md Iqbal Hossai., Si Hong Park, & Sang do Ha. (2020). “Viability of Salmonella Typhimurium Biofilms on Major Food-Contact Surfaces and Eggshell Treated during 35 Days with and without Water Storage at Room Temperature.” Poultry Science 99 (9): 4558–65. https://doi.org/10.1016/j.psj.2020.05.055.Ma, Z., Tang, X., Stanford, K., Chen, X., McAllister, T. A., & Niu, Y. D. (2021). Single- and Dual-Species Biofilm Formation by Shiga Toxin-Producing Escherichia coli and Salmonella, and Their Susceptibility to an Engineered Peptide WK2. Microorganisms, 9(12), 2510. https://doi.org/10.3390/microorganisms9122510Merino, L., Trejo, F. M., De Antoni, G., & Golowczyc, M. A. (2019). Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry. Food research international (Ottawa, Ont.), 123, 258–265. https://doi.org/10.1016/j.foodres.2019.04.067Milho, C., Silva, M. D., Melo, L., Santos, S., Azeredo, J., & Sillankorva, S. (2018). Control of Salmonella Enteritidis on food contact surfaces with bacteriophage PVP-SE2. Biofouling, 34(7), 753–768. https://doi.org/10.1080/08927014.2018.1501475Mohan, A & Purohit, A. Anti-Salmonella Activity of Pyruvic and Succinic Acid in Combination with Oregano Essential Oil. Food Control 110(3):106960. DOI:10.1016/j.foodcont.2019.106960Montville, T. J., Chen, Y. (1998). Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Applied microbiology and Biotechnology, 50(5), 511-519Moretro, T., Vestby, L.K., Nesse, L.L., Storheim, S.E., Kotlarz, K. & Langsrud, S. (2009) Evaluation of efficacy of disinfectants against Salmonella from the feed industry. J Appl Microbiol 106, 1005–1012.Pang, Xinyi, & Hyun Gyun Yuk. (2018). “Effect of Pseudomonas Aeruginosa on the Sanitizer Sensitivity of Salmonella Enteritidis Biofilm Cells in Chicken Juice.” Food Control 86 (April): 59–65. https://doi.org/10.1016/j.foodcont.2017.11.012.Pérez-Lavalle, L., Carrasco, E., & Valero, A. (2020). “Strategies for Microbial Decontamination of Fresh Blueberries and Derived Products.” Foods. MDPI. https://doi.org/10.3390/foods9111558Postcosecha, Tecnología, SC México García-Robles, Jesús Manuel, and Laura Janeth. (2017).“Revista Iberoamericana de Tecnología Postcosecha Asociación Iberoamericana De” 18: 9–22. http://www.scielo.org.co/pdf/sun/v30n1/v30n1a09.pdfRamatla T, Tawana M, Onyiche TE, Lekota KE, Thekisoe O. Prevalence of Antibiotic Resistance in Salmonella Serotypes Concurrently Isolated from the Environment, Animals, and Humans in South Africa: A Systematic Review and Meta-Analysis. Antibiotics (Basel). 2021 Nov 23;10(12):1435. doi: 10.3390/antibiotics10121435. PMID: 34943647; PMCID: PMC8698067.Ripolles-Avila, C.; Ríos-Castillo, A.G.; Fontecha-Umaña, F.; Rodríguez-Jerez, J.J. Removal of Salmonella enterica serovar Typhimurium and Cronobacter sakazakii biofilms from food contact surfaces through enzymatic catalysis. J. Food Saf. 2019, 40, e12755Sadekuzzaman, M., M. F. R. Mizan, H. S. Kim, S. Yang, and S. D. Ha. (2018). Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. LWT 89:134–9. doi: 10.1016/j.lwt.2017.10.042.Sakarikou, Christina, Dimitra Kostoglou, Manuel Simões, and Efstathios Giaouris. (2020). “Exploitation of Plant Extracts and Phytochemicals against Resistant Salmonella Spp. in Biofilms..Food Research International 128 (November 2019): 108806. https://doi.org/10.1016/j.foodres.2019.108806.Silva-Espinoza, Brenda A., Julián J. Palomares-Navarro, Melvin R. Tapia-Rodríguez, Manuel R. Cruz-Valenzuela, Gustavo A. González-Aguilar, Erika Silva-Campa, Martín Pedroza-Montero, Monica Almeida-Lopes, Raquel Miranda, and Jesus F. Ayala-Zavala. (2020). “Combination of Ultraviolet Light-C and Clove Essential Oil to Inactivate Salmonella Typhimurium Biofilms on Stainless Steel.” Journal of Food Safety 40 (3). https://doi.org/10.1111/jfs.12788.Skowron, Krzysztof, Ewa Wałecka-Zacharska, Katarzyna Grudlewska, Joanna Kwiecińska-Piróg, Natalia Wiktorczyk, Maria Kowalska, Zbigniew Paluszak, et al. (2020). “Effect of Selected Environmental Factors on the Microbicidal Effectiveness of Radiant Catalytic Ionization.” Frontiers in Microbiology 10. https://doi.org/10.3389/fmicb.2019.03057Ministerio de Protección Social, Instituto Nacional de Salud &Unidad de Evaluación de Riesgos para la Inocuidad de los Alimentos. (2011). Perfil de riesgo Salmonella spp. (no tifoideas) en pollo entero y en piezas. Obtenido de perfil-salmonella-spp.pdf (minsalud.gov.co)Hernández Santiago, R. (2019). Aislamiento y caracterización parcial de bacteriófagos de salmonella spp con potencial aplicación en el biocontrol sobre superficies http://www.scielo.org.co/pdf/sun/v30n1/v30n1a09.pdfSede BarranquillaMicrobiologíaORIGINALPDF_Resumen.pdfPDF_Resumen.pdfapplication/pdf307781https://bonga.unisimon.edu.co/bitstreams/a2676136-03e4-44ad-b6d9-2e08b9d9bd66/downloaddeb7a03e7c2415bc2ccfa4eb4376d5daMD51PDF.pdfPDF.pdfapplication/pdf513296https://bonga.unisimon.edu.co/bitstreams/bb25cd52-83f6-488c-833d-6a20c75d337d/downloade39888fdecee833fb90f8588ccf1bee4MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/83346a8a-9a48-4f0a-8570-8c1c73607cd0/download4460e5956bc1d1639be9ae6146a50347MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83000https://bonga.unisimon.edu.co/bitstreams/8c4a40cb-d7c9-4cde-80ca-c14afb8dd5fe/download2a1661e5960a7bab4fd8dda692fb677cMD54TEXTEstrategias_Control_Biopelículas_Salmonella_SSP_Acero_Inoxidable_Resumen.pdf.txtEstrategias_Control_Biopelículas_Salmonella_SSP_Acero_Inoxidable_Resumen.pdf.txtExtracted texttext/plain25334https://bonga.unisimon.edu.co/bitstreams/10cda3b6-7ded-4100-9841-db053340153e/download7fec2ca6cfc2ac3e3904ac67131ea21aMD55Estrategias_Control_Biopelículas_Salmonella_SSP_Acero_Inoxidable_PDF.pdf.txtEstrategias_Control_Biopelículas_Salmonella_SSP_Acero_Inoxidable_PDF.pdf.txtExtracted texttext/plain53750https://bonga.unisimon.edu.co/bitstreams/7125a1d2-4dda-48de-af36-096860a696d3/downloadf37c226f697807517893dae353fe8ef1MD57PDF_Resumen.txtPDF_Resumen.txtExtracted texttext/plain25334https://bonga.unisimon.edu.co/bitstreams/30c676d1-76c2-42c2-9439-331508246a46/download7fec2ca6cfc2ac3e3904ac67131ea21aMD59PDF.txtPDF.txtExtracted texttext/plain53750https://bonga.unisimon.edu.co/bitstreams/14bd1755-6989-467e-950c-be15f0df20c5/downloadf37c226f697807517893dae353fe8ef1MD511PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain53750https://bonga.unisimon.edu.co/bitstreams/6a2583fe-5971-4cdf-9aa1-51621f40e219/downloadf37c226f697807517893dae353fe8ef1MD513PDF_Resumen.pdf.txtPDF_Resumen.pdf.txtExtracted texttext/plain25334https://bonga.unisimon.edu.co/bitstreams/7decfd31-6903-4c0a-aaef-4c52f94ec5db/download7fec2ca6cfc2ac3e3904ac67131ea21aMD515THUMBNAILEstrategias_Control_Biopelículas_Salmonella_SSP_Acero_Inoxidable_Resumen.pdf.jpgEstrategias_Control_Biopelículas_Salmonella_SSP_Acero_Inoxidable_Resumen.pdf.jpgGenerated Thumbnailimage/jpeg4006https://bonga.unisimon.edu.co/bitstreams/53a06c12-256f-4ed8-b9e5-62b5d471d724/downloada3f49370ec8b182c138f11e48f51fd31MD56Estrategias_Control_Biopelículas_Salmonella_SSP_Acero_Inoxidable_PDF.pdf.jpgEstrategias_Control_Biopelículas_Salmonella_SSP_Acero_Inoxidable_PDF.pdf.jpgGenerated Thumbnailimage/jpeg3347https://bonga.unisimon.edu.co/bitstreams/5b1efd92-9cad-467e-be73-badfa41ae311/downloade5cd3acdd6ead260f36d34b5d9dc6d8cMD58PDF_Resumen.jpgPDF_Resumen.jpgGenerated Thumbnailimage/jpeg4006https://bonga.unisimon.edu.co/bitstreams/e04533be-9c64-46bb-913b-b4fee7e3309d/downloada3f49370ec8b182c138f11e48f51fd31MD510PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg3347https://bonga.unisimon.edu.co/bitstreams/3b3728cc-b290-40c3-a7e3-f71ade510f7d/downloade5cd3acdd6ead260f36d34b5d9dc6d8cMD512PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3347https://bonga.unisimon.edu.co/bitstreams/4cad2260-cbf8-405b-8563-a85abe9562b3/downloade5cd3acdd6ead260f36d34b5d9dc6d8cMD514PDF_Resumen.pdf.jpgPDF_Resumen.pdf.jpgGenerated Thumbnailimage/jpeg4006https://bonga.unisimon.edu.co/bitstreams/aac1117e-d2c4-4e99-aa92-f7ad4235e6e7/downloada3f49370ec8b182c138f11e48f51fd31MD51620.500.12442/11718oai:bonga.unisimon.edu.co:20.500.12442/117182024-08-14 21:54:42.199http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.co