Sistema computacional para la detección de glioblastomas en resonancia magnética usando aprendizaje no supervisado

La imagenología por resonancia magnética convencional o avanzada es fundamental en la valoración de diversos tipos de tumores, incluyendo los glioblastomas. Ante la gran heterogeneidad e invasividad de estos, su manejo en la actualidad constituye un desafío complejo para los especialistas clínicos y...

Full description

Autores:
Medelo Ballesteros, Hebert
Espinosa-Castro, Jhon-Franklin
Rodríguez, Johel E.
Neira Borja, James
Diaz, Viviana Elizabeth
Gómez Félix, Gabriela
Chango Cando, Freddy
Mallitasig Panchi, Betty
Añez, Roberto
A. Fossi, Cleiver
Bermúdez, Valmore
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
spa
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/8781
Acceso en línea:
https://hdl.handle.net/20.500.12442/8781
http://doi.org/10.5281/zenodo.4263299
http://saber.ucv.ve/ojs/index.php/rev_aavft/article/view/21059
Palabra clave:
Glioblastoma
Resonancia magnética
Realce de imágenes
Filtro de suavizado
Segmentación
Aprendizaje no supervisado
Visualización tridimensional
Interfaz gráfica de usuario
Magnetic resonance
Image enhancement
Smoothing filter
Segmentation
Unsupervised learning
Three-dimensional visualization
Graphical user interface
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional