Mechanisms of palmitate-induced lipotoxicity in osteocytes

Background: Lipotoxicity is defined as cellular toxicity observed in the presence of an abnormal accumulation of fat and adipocyte-derived factors in non-fat tissues. Palmitic acid (PA), an abundant fatty acid in the bone marrow and particularly in osteoporotic bones, affects osteoblastogenesis and...

Full description

Autores:
Al Saedi, Ahmed
Bermeo, Sandra
Plotkin, Lilian
Myers, Damian E.
Duque, Gustavo
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/3607
Acceso en línea:
https://hdl.handle.net/20.500.12442/3607
Palabra clave:
Palmitic acid
Osteocytes
Lipotoxicity
Fatty acids
Osteoporosis
Apoptosis
Autophagy
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_367f99e50e76f0a42fc9e95065c25d0f
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/3607
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Mechanisms of palmitate-induced lipotoxicity in osteocytes
title Mechanisms of palmitate-induced lipotoxicity in osteocytes
spellingShingle Mechanisms of palmitate-induced lipotoxicity in osteocytes
Palmitic acid
Osteocytes
Lipotoxicity
Fatty acids
Osteoporosis
Apoptosis
Autophagy
title_short Mechanisms of palmitate-induced lipotoxicity in osteocytes
title_full Mechanisms of palmitate-induced lipotoxicity in osteocytes
title_fullStr Mechanisms of palmitate-induced lipotoxicity in osteocytes
title_full_unstemmed Mechanisms of palmitate-induced lipotoxicity in osteocytes
title_sort Mechanisms of palmitate-induced lipotoxicity in osteocytes
dc.creator.fl_str_mv Al Saedi, Ahmed
Bermeo, Sandra
Plotkin, Lilian
Myers, Damian E.
Duque, Gustavo
dc.contributor.author.none.fl_str_mv Al Saedi, Ahmed
Bermeo, Sandra
Plotkin, Lilian
Myers, Damian E.
Duque, Gustavo
dc.subject.eng.fl_str_mv Palmitic acid
Osteocytes
Lipotoxicity
Fatty acids
Osteoporosis
Apoptosis
Autophagy
topic Palmitic acid
Osteocytes
Lipotoxicity
Fatty acids
Osteoporosis
Apoptosis
Autophagy
description Background: Lipotoxicity is defined as cellular toxicity observed in the presence of an abnormal accumulation of fat and adipocyte-derived factors in non-fat tissues. Palmitic acid (PA), an abundant fatty acid in the bone marrow and particularly in osteoporotic bones, affects osteoblastogenesis and osteoblast function, decreasing their survival through induction of apoptosis and dysfunctional autophagy. In this study, we hypothesized that PA also has a lipotoxic effect on osteocytes in vitro. Methods: Initially, we tested the effect of PA on osteocyte-derived factors DKK1, sclerostin and RANKL. Then, we tested whether PA affects survival and causes apoptosis in osteocytes. Subsequently, we investigated the effect of PA on autophagy by detecting the membrane component LC3-II (Western blot) and staining them and lysosomes with Lysotracker Red dye. Results: PA decreases RANKL, DKK1 and sclerostin expression in osteocytes. In addition, we found that PA induces apoptosis and reduces osteocyte survival. PA also caused autophagy failure identified by a significant increase in LC3-II and a reduced number of autophagosomes/lysosomes in the cytoplasm. Conclusion: In addition to the effects of PA on RANKL, DKK1 and sclerostin expression, which could have significant deleterious impact on bone cell coupling and bone turnover, PA also induced apoptosis and reduced autophagy in osteocytes. Considering that apoptosis and cell dysfunction are two common changes occurring in the osteocytes of osteoporotic bone, our findings suggest that PA could play a role in the pathogenesis of the disease. Suppression of these effects could bring new potential targets for therapeutic interventions in the future.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-07-22T19:42:50Z
dc.date.available.none.fl_str_mv 2019-07-22T19:42:50Z
dc.date.issued.none.fl_str_mv 2019-06
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 87563282
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/3607
identifier_str_mv 87563282
url https://hdl.handle.net/20.500.12442/3607
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Elsevier
dc.source.eng.fl_str_mv Revista BONE
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://doi.org/10.1016/j.bone.2019.06.016
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/8bd0746c-ee17-45fe-a44b-021a7ed63ed9/download
https://bonga.unisimon.edu.co/bitstreams/a9450fec-1daa-4940-9038-82dd949b680c/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
3fdc7b41651299350522650338f5754d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076158841454592
spelling Al Saedi, Ahmed7ae05a3f-ed6d-409f-987e-6184f911fe1cBermeo, Sandra5adcb3ad-0b9f-41f8-8a5f-a4d6086d31efPlotkin, Lilian972d072d-a4f0-4168-bd2e-87fbd12f6398Myers, Damian E.a0b8df76-235d-4377-a9fb-4af5078eeff2Duque, Gustavof99ef41b-e311-4165-bbc4-73e084153d5f2019-07-22T19:42:50Z2019-07-22T19:42:50Z2019-0687563282https://hdl.handle.net/20.500.12442/3607Background: Lipotoxicity is defined as cellular toxicity observed in the presence of an abnormal accumulation of fat and adipocyte-derived factors in non-fat tissues. Palmitic acid (PA), an abundant fatty acid in the bone marrow and particularly in osteoporotic bones, affects osteoblastogenesis and osteoblast function, decreasing their survival through induction of apoptosis and dysfunctional autophagy. In this study, we hypothesized that PA also has a lipotoxic effect on osteocytes in vitro. Methods: Initially, we tested the effect of PA on osteocyte-derived factors DKK1, sclerostin and RANKL. Then, we tested whether PA affects survival and causes apoptosis in osteocytes. Subsequently, we investigated the effect of PA on autophagy by detecting the membrane component LC3-II (Western blot) and staining them and lysosomes with Lysotracker Red dye. Results: PA decreases RANKL, DKK1 and sclerostin expression in osteocytes. In addition, we found that PA induces apoptosis and reduces osteocyte survival. PA also caused autophagy failure identified by a significant increase in LC3-II and a reduced number of autophagosomes/lysosomes in the cytoplasm. Conclusion: In addition to the effects of PA on RANKL, DKK1 and sclerostin expression, which could have significant deleterious impact on bone cell coupling and bone turnover, PA also induced apoptosis and reduced autophagy in osteocytes. Considering that apoptosis and cell dysfunction are two common changes occurring in the osteocytes of osteoporotic bone, our findings suggest that PA could play a role in the pathogenesis of the disease. Suppression of these effects could bring new potential targets for therapeutic interventions in the future.engElsevierAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Revista BONEhttps://doi.org/10.1016/j.bone.2019.06.016Palmitic acidOsteocytesLipotoxicityFatty acidsOsteoporosisApoptosisAutophagyMechanisms of palmitate-induced lipotoxicity in osteocytesarticlehttp://purl.org/coar/resource_type/c_6501E.A. Zimmermann, E. Schaible, H. Bale, H.D. Barth, S.Y. Tang, P. Reichert, B. Busse, T. Alliston, J.W. Ager 3rd, R.O. Ritchie, Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales, Proc. Natl. Acad. Sci. U. S. A. 108 (35) (2011) 14416–14421.D.P. Fyhrie, B.A. Christiansen, Bone material properties and skeletal fragility, Calcif. Tissue Int. 97 (3) (2015) 213–228.S. Muruganandan, R. Govindarajan, C.J. Sinal, Bone marrow adipose tissue and skeletal health, Current Osteoporosis Reports 16 (4) (2018) 434–442.L. Singh, S. Tyagi, D. Myers, G. Duque, Good, bad, or ugly: the biological roles of bone marrow fat, Current Osteoporosis Reports 16 (2) (2018) 130–137.K. Gunaratnam, C. Vidal, J.M. Gimble, G. Duque, Mechanisms of palmitate-induced lipotoxicity in human osteoblasts, Endocrinology 155 (1) (2014) 108–116.K. Gunaratnam, C. Vidal, R. Boadle, C. Thekkedam, G. Duque, Mechanisms of palmitate-induced cell death in human osteoblasts, Biology open 2 (12) (2013) 1382–1389.A.G. Veldhuis-Vlug, C.J. Rosen, Clinical implications of bone marrow adiposity, J. Intern. Med. 283 (2) (2018) 121–139.L.F. Bonewald, The amazing osteocyte, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 26 (2) (2011) 229–238.L.F. Bonewald, Osteocytes as dynamic multifunctional cells, Ann. N. Y. Acad. Sci. 1116 (2007) 281–290.R.S. Weinstein, S.C. Manolagas, Apoptosis and osteoporosis, Am. J. Med. 108 (2) (2000) 153–164.S.C. Manolagas, A.M. Parfitt, What old means to bone, Trends Endocrinol Metab 21 (6) (2010) 369–374.L.I. Plotkin, Apoptotic osteocytes and the control of targeted bone resorption, Current osteoporosis reports 12 (1) (2014) 121–126.G. Gu, M. Mulari, Z. Peng, T.A. Hentunen, H.K. Vaananen, Death of osteocytes turns off the inhibition of osteoclasts and triggers local bone resorption, Biochem. Biophys. Res. Commun. 335 (4) (2005) 1095–1101.O.D. Kennedy, M.B. Schaffler, The roles of osteocyte signaling in bone, J. Am. Acad. Orthop. Surg. 20 (10) (2012) 670–671.H.M. Frost, Tetracycline-based histological analysis of bone remodeling, Calcif. Tissue Res. 3 (3) (1969) 211–237.R.H. Unger, L. Orci, Lipoapoptosis: its mechanism and its diseases, Biochim. Biophys. Acta 1585 (2–3) (2002) 202–212.L. Martino, M. Masini, M. Novelli, P. Beffy, M. Bugliani, L. Marselli, P. Masiello, P. Marchetti, V. De Tata, Palmitate activates autophagy in INS-1E beta-cells and in isolated rat and human pancreatic islets, PLoS One 7 (5) (2012) e36188.T. Nakashima, M. Hayashi, T. Fukunaga, K. Kurata, M. Oh-Hora, J.Q. Feng, L.F. Bonewald, T. Kodama, A. Wutz, E.F. Wagner, J.M. Penninger, H. Takayanagi, Evidence for osteocyte regulation of bone homeostasis through RANKL expression, Nat. Med. 17 (10) (2011) 1231–1234.A. Elbaz, X. Wu, D. Rivas, J.M. Gimble, G. Duque, Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro, J. Cell. Mol. Med. 14 (4) (2010) 982–991.H.M. Davis, R. Pacheco-Costa, E.G. Atkinson, L.R. Brun, A.R. Gortazar, J. Harris, M. Hiasa, S.A. Bolarinwa, T. Yoneda, M. Ivan, A. Bruzzaniti, T. Bellido, L.I. Plotkin, Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging, Aging Cell 16 (3) (2017) 551–563.L.F. Bonewald, Establishment and characterization of an osteocyte-like cell line, MLO-Y4, J. Bone Miner. Metab. 17 (1) (1999) 61–65.M.K. Sutherland, J.C. Geoghegan, C. Yu, E. Turcott, J.E. Skonier, D.G. Winkler, J.A. Latham, Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation, Bone 35 (4) (2004) 828–835.M.M. McDonald, A. Morse, A. Schindeler, K. Mikulec, L. Peacock, T. Cheng, J. Bobyn, L. Lee, P.A. Baldock, P.I. Croucher, P.P.L. Tam, D.G. Little, Homozygous Dkk1 knockout mice exhibit high bone mass phenotype due to increased bone formation, Calcif. Tissue Int. 102 (1) (2018) 105–116.L.I. Plotkin, R.S. Weinstein, A.M. Parfitt, P.K. Roberson, S.C. Manolagas, T. Bellido, Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin, J. Clin. Invest. 104 (10) (1999) 1363–1374.M. Almeida, L. Han, M. Martin-Millan, L.I. Plotkin, S.A. Stewart, P.K. Roberson, S. Kousteni, C.A. O'Brien, T. Bellido, A.M. Parfitt, R.S. Weinstein, R.L. Jilka, S.C. Manolagas, Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids, J. Biol. Chem. 282 (37) (2007) 27285–27297.R.S. Weinstein, R.L. Jilka, A.M. Parfitt, S.C. Manolagas, Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone, J. Clin. Invest. 102 (2) (1998) 274–282.O. Verborgt, G.J. Gibson, M.B. Schaffler, Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo, J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 15 (1) (2000) 60–67.R. Deshimaru, K. Ishitani, K. Makita, F. Horiguchi, S. Nozawa, Analysis of fatty acid composition in human bone marrow aspirates, The Keio journal of medicine 54 (3) (2005) 150–155.J.F. Griffith, D.K. Yeung, A.T. Ahuja, C.W. Choy, W.Y. Mei, S.S. Lam, T.P. Lam, Z.Y. Chen, P.C. Leung, A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density, Bone 44 (6) (2009) 1092–1096.Y. Tsujimoto, S. Shimizu, Another way to die: autophagic programmed cell death, Cell Death Differ. 12 (Suppl. 2) (2005) 1528–1534.Y.S. Rajawat, Z. Hilioti, I. Bossis, Aging: central role for autophagy and the lysosomal degradative system, Ageing Res. Rev. 8 (3) (2009) 199–213.F. Madeo, N. Tavernarakis, G. Kroemer, Can autophagy promote longevity? Nat. Cell Biol. 12 (9) (2010) 842–846.V. Pierrefite-Carle, S. Santucci-Darmanin, V. Breuil, O. Camuzard, G.F. Carle, Autophagy in bone: self-eating to stay in balance, Ageing Res. Rev. 24 (Pt B) (2015) 206–217.M. Onal, M. Piemontese, J. Xiong, Y. Wang, L. Han, S. Ye, M. Komatsu, M. Selig, R.S. Weinstein, H. Zhao, R.L. Jilka, M. Almeida, S.C. Manolagas, C.A. O'Brien, Suppression of autophagy in osteocytes mimics skeletal aging, J. Biol. Chem. 288 (24) (2013) 17432–17440.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/8bd0746c-ee17-45fe-a44b-021a7ed63ed9/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/a9450fec-1daa-4940-9038-82dd949b680c/download3fdc7b41651299350522650338f5754dMD5320.500.12442/3607oai:bonga.unisimon.edu.co:20.500.12442/36072024-08-14 21:54:16.177http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalmetadata.onlyhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=