Engineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasion

Trypanosoma cruzi is a flagellate protozoan pathogen that causes Chagas disease. Currently there is no preventive treatment and the efficiency of the two drugs available is limited to the acute phase. Therefore, there is an unmet need for innovative tools to block transmission in endemic areas. In t...

Full description

Autores:
Kalempa Demeu, Lara Maria
Jahn Soares, Rodrigo
Severo Miranda, Juliana
Pacheco-Lugo, Lisandro A.
Gonçalves Oliveira, Kelin
Cortez Plaza, Cristian Andrés
Billiald, Philippe
Ferreira de Moura, Juliana
Yoshida, Nobuko
Magalhães Alvarenga, Larissa
Duarte DaRocha, Wanderson
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/4168
Acceso en línea:
https://hdl.handle.net/20.500.12442/4168
Palabra clave:
Trypanosoma cruzi
Parasitic diseases
Periplasm
Chagas disease
Protein extraction
Protozoan infections
Sequence databases
Trypomastigotes
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_3087b72fce852bb269469aba875527b4
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/4168
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Engineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasion
title Engineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasion
spellingShingle Engineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasion
Trypanosoma cruzi
Parasitic diseases
Periplasm
Chagas disease
Protein extraction
Protozoan infections
Sequence databases
Trypomastigotes
title_short Engineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasion
title_full Engineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasion
title_fullStr Engineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasion
title_full_unstemmed Engineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasion
title_sort Engineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasion
dc.creator.fl_str_mv Kalempa Demeu, Lara Maria
Jahn Soares, Rodrigo
Severo Miranda, Juliana
Pacheco-Lugo, Lisandro A.
Gonçalves Oliveira, Kelin
Cortez Plaza, Cristian Andrés
Billiald, Philippe
Ferreira de Moura, Juliana
Yoshida, Nobuko
Magalhães Alvarenga, Larissa
Duarte DaRocha, Wanderson
dc.contributor.author.none.fl_str_mv Kalempa Demeu, Lara Maria
Jahn Soares, Rodrigo
Severo Miranda, Juliana
Pacheco-Lugo, Lisandro A.
Gonçalves Oliveira, Kelin
Cortez Plaza, Cristian Andrés
Billiald, Philippe
Ferreira de Moura, Juliana
Yoshida, Nobuko
Magalhães Alvarenga, Larissa
Duarte DaRocha, Wanderson
dc.subject.eng.fl_str_mv Trypanosoma cruzi
Parasitic diseases
Periplasm
Chagas disease
Protein extraction
Protozoan infections
Sequence databases
Trypomastigotes
topic Trypanosoma cruzi
Parasitic diseases
Periplasm
Chagas disease
Protein extraction
Protozoan infections
Sequence databases
Trypomastigotes
description Trypanosoma cruzi is a flagellate protozoan pathogen that causes Chagas disease. Currently there is no preventive treatment and the efficiency of the two drugs available is limited to the acute phase. Therefore, there is an unmet need for innovative tools to block transmission in endemic areas. In this study, we engineered a novel recombinant molecule able to adhere to the T. cruzi surface, termed scFv-10D8, that consists of a single-chain variable fragment (scFv) derived from mAb-10D8 that targets gp35/50. The synthetic gene encoding scFv-10D8 was cloned and fused to a 6×His tag and expressed in a prokaryotic expression system. Total periplasmic or 6xHis tag affinity-purified fractions of scFv-10D8 retained the capacity to bind to gp35/50, as shown by Western blot analyses. Pre-incubation of metacyclic trypomastigotes with scFv-10D8 showed a remarkable reduction in cell invasion capacity. Our results suggest that scFv-10D8 can be used in a paratransgenic approach to target parasites in insect vectors, avoiding dissemination of infective forms. Such advances in the development of this functional molecule will surely prompt the improvement of alternative strategies to control Chagas disease by targeting mammalian host stages.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-10-17T14:51:31Z
dc.date.available.none.fl_str_mv 2019-10-17T14:51:31Z
dc.date.issued.none.fl_str_mv 2019-10
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/4168
url https://hdl.handle.net/20.500.12442/4168
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Javier Marcelo Di Noia, Institut de recherches cliniques de Montreal, CANADA
dc.source.eng.fl_str_mv PLoS ONE
dc.source.spa.fl_str_mv 14(10), (2019)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://doi.org/10.1371/journal. pone.0223773
dc.source.bibliographicCitation.eng.fl_str_mv Tibayrenc M, Barnabe´ C, Telleria J. Reticulate Evolution in: Medical and Epidemiological Implications In: Telleria J, Tibayrenc M, editors. American trypanosomiasis: Chagas disease One hundred years of research. Burlington: Elsevier; 2010. 475–488.
World Health Organization Health Topics, Chagas disease, 2017. www.who.int/topics/chagas_disease/ en/. Accessed 04 Oct 2017
Coura JR. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions: a comprehensive review. Mem Inst Oswaldo Cruz. 2015; 110:277–282. https://doi.org/10.1590/ 0074-0276140362 PMID: 25466622
Browne AJ, Guerra CA, Alves RV, da Costa VM, Wilson AL, Pigott DM, et al. The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Sci Data. 2017; 4:170050. https://doi.org/10.1038/sdata.2017.50 PMID: 28398292
World Health Organization (2015) Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec Feb 90:33–43
Gurgel-Gonc¸alves R, Galvão C, Costa J, Peterson AT. Geographic distribution of Chagas disease vectors in brazil based on ecological niche modeling. J Trop Med. 2012;:Article ID 705326. https://doi.org/ 10.1155/2012/705326 PMID: 22523500
Vinhaes MC, de Oliveira SV, Reis PO, de Lacerda Sousa AC, Silva RA, Obara MT,et al. Assessing the vulnerability of Brazilian municipalities to the vectorial transmission of Trypanosoma cruzi using multicriteria decision analysis. Acta Trop. 2014; 137:105–110. https://doi.org/10.1016/j.actatropica.2014.05. 007 PMID: 24857942
(2016) Brazilian consensus on Chagas disease. Epidemiol Serv Saúde, Brasília 25(nu´m. esp.):7–86
Mougabure-Cueto G, Picollo MI. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 2015; 149:70–85. https://doi.org/10.1016/j.actatropica.2015.05. 014 PMID: 26003952
Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol. 2003; 19:495–501. https://doi.org/10.1016/j.pt.2003.09.001 PMID: 14580960
Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg. 1987; 81:755–759. https://doi.org/10.1016/ 0035-9203(87)90020-4 PMID: 3130683
Teston AP, Monteiro WM, Reis D, Bossolani GD, Gomes ML, De Araújo SM, et al. In vivo susceptibility to Benznidazole of Trypanosoma cruzi strains from the western Brazilian Amazon. Trop Med Int Health. 2013; 18:85–95. https://doi.org/10.1111/tmi.12014 PMID: 23130989
Baral TN, Magez S, Stijlemans B, Conrath K, Vanhollebeke B, Pays E, et al. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med. 2016; 12:580–584. https://doi.org/10.1038/nm1395 PMID: 16604085
Arias JL, Unciti-Broceta JD, Maceira J, Del Castillo T, Hernández-Quero J, Magez S, et al. Nanobody conjugated PLGA nanoparticles for active targeting of African trypanosomiasis. J Control Release. 2014; 197 10:190–198. https://doi.org/10.1016/j.jconrel.2014.11.002 PMID: 25445702
Unciti-Broceta JD, Arias JL, Maceira J, Soriano M, Ortiz-González M, Hernández-Quero J, et al. Specific cell targeting therapy bypasses drug resistance mechanisms in African trypanosomiasis. PLoS Pathog. 2015; 25:e1004942(6). https://doi.org/10.1371/journal.ppat.1004942 PMID: 26110623
Stijlemans B, Caljon G, Natesan SK, Saerens D, Conrath K, Pérez-Morga D, et al. High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathog. 2011; 7:e1002072. https://doi.org/10.1371/journal.ppat.1002072 PMID: 21698216
Berasategui A, Shukla S, Salem H, Kaltenpoth M. Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol. 2016; 100:1567–1577. https://doi.org/10.1007/s00253-015-7186-9 PMID: 26659224
Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, et al. Paratransgenic control of vector borne diseases. Int J Biol Sci. 2011; 7:1334–1344. https://doi.org/10.7150/ijbs.7.1334 PMID: 22110385
Durvasula RV, Sundaram RK, Kirsch P, Hurwitz I, Crawford CV, Dotson E, et al. Genetic transformation of a Corynebacterial symbiont from the Chagas disease vector Triatoma infestans. Exp Parasitol. 2018; 119:94–98. https://doi.org/10.1016/j.exppara.2007.12.020 PMID: 18331732
Matthews S, Rao VS, Durvasula RV. Modeling horizontal gene transfer (HGT) in the gut of the Chagas disease vector Rhodnius prolixus. Parasites Vectors. 2011; 4:77. https://doi.org/10.1186/1756-3305-4- 77 PMID: 21569540
De Vooght CG, De Ridder K, Van Den Abbeele J. Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microb Cell Factories. 2014; 13:156. https://doi.org/10.1186/s12934-014-0156-6 PMID: 25376234
Yoshida N, Mortara RA, Araguth MF, Gonzalez JC, Russo M. Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35- and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi. Infect Immun. 1989; 57:1663–1667 PMID: 2656520
Mortara RA, Da Silva S, Araguth MF, Blanco SA, Yoshida N. Polymorphism of the 35- and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi metacyclic trypomastigotes. Infect Immun. 1992; 60:4673–4678 PMID: 1328061
Urban I, Santurio LB, Chidichimo A, Yu H, Chen X, Mucci J, et l. Molecular diversity of the Trypanosoma cruzi TcSMUG family of mucin genes and proteins. Biochem J. 2011; 438:303–313. https://doi.org/10. 1042/BJ20110683 PMID: 21651499
Yoshida N. Molecular basis of mammalian cell invasion by Trypanosoma cruzi. An Acad Bras Cienc. 2006; 78:87–111. https://doi.org//S0001-37652006000100010 PMID: 16532210
Jones C, Todeschini AR, Agrellos OA, Previato JO, Mendonc¸a-Previato L. Heterogeneity in the biosynthesis of mucin O-glycans from Trypanosoma cruzi tulahuen strain with the expression of novel galactofuranosyl- containing oligosaccharides. Biochemistry. 2004/ 43(37):11889–97. https://doi.org/10.1021/ bi048942u PMID: 15362875
Milenic DE, Yokota T, Filpula DR, Finkelman MA, Dodd SW, Wood JF, et al. Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 1991; 51:6363–71 PMID: 1933899
Kuan CT, Srivastava N, Mclendon RE, Marasco WA, Zalutsky MR, Bigner DD. Recombinant singlechain variable fragment antibodies against extracellular epitopes of human multidrug resistance protein MRP3 for targeting malignant gliomas. Int J Cancer. 2010; 127:598–611. https://doi.org/10.1002/ijc. 25062 PMID: 19937796
Crivianu-Gaita V, ThompsonM (2016) Aptamers, antibody scFv, and antibody Fab’ fragments: an overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron. 2016; 85:32–45. https://doi.org/10.1016/j.bios.2016.04.091 PMID: 27155114
Fields C, O’Connell D, Xiao S, Lee GU, Billiald P, Muzard J. Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc. 2013; 8:1125–1148. https://doi.org/10.1038/nprot.2013.057 PMID: 23680984
Lyskov S, Chou FC, Conchúir SO´ , Der BS, Drew K, Kuroda D, et al. Serverification of molecular modeling applications: the Rosetta online server that includes everyone (ROSIE). PLoS One. 2013 8: e63906. https://doi.org/10.1371/journal.pone.0063906 PMID: 23717507
Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW. Protein docking using case-based reasoning. Proteins. 2013; 81:2150–2158. https://doi.org/10.1002/prot.24433 PMID: 24123156
Mcguffin LJ, Atkins JD, Salehe BR, Shuid AN, Roche DB. IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences. Nucleic Acids Res. 2015; 43:W169– W173. https://doi.org/10.1093/nar/gkv236 PMID: 25820431
Karim-Silva S, Moura Jd, Noiray M, Minozzo JC, Aubrey N, Alvarenga LM, et al. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism. Immunol Lett. 2016; 176:90–6. https://doi.org/10.1016/j.imlet.2016.05.019 PMID: 27288291
Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Typanosoma cruzi intraespecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009; 104:1051–1054. https://doi.org/10.1590/s0074-02762009000700021 PMID: 20027478
Contreras VT, Araujo-Jorge TC, Bonaldo MC, Thomaz N, Barbosa HS, Meirelles N, et al. Biological aspect of the Dm28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz. 1988; 83:123–133. https://doi.org/10.1590/s0074-02761988000100016 PMID: 3074237
Teixeira MMG, Yoshida N. Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol. 1986; 18:271–282. https://doi. org/10.1016/0166-6851(86)90085-x PMID: 3515178
Serrano AA, Schenkman S, Yoshida N, Mehlert A, Richardson JM, Ferguson MA. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem. 1995; 270:27244–27253. https://doi.org/10.1074/jbc.270.45.27244 PMID: 7592983
Mcgwire BS, Olson CL, Tack BF, Engman DM. Killing of African trypanosomes by antimicrobial peptides. J Infect Dis. 2003; 188:146–152. https://doi.org/10.1086/375747 PMID: 12825184
Smulski C, Labovsky V, Levy G, Hontebeyrie M, Hoebeke J, Levin MJ. Structural basis of the crossreaction between an antibody to the Trypanosoma cruzi ribosomal P2β protein and the human β1 adrenergic receptor. FASEB J. 2006; 20:1396–1406. https://doi.org/10.1096/fj.05-5699com PMID: 16816115
Ayub MJ, Nyambega B, Simonetti L, Duffy T, Longhi SA, Gómez KA, et al. Selective blockade of trypanosomatid protein synthesis by a recombinant antibody anti-Trypanosoma cruzi P2β protein. PLOS ONE. 2012: 7:e36233. https://doi.org/10.1371/journal.pone.0036233 PMID: 22570698
Mendonc¸a-Previato L, Penha L, Garcez TC, Jones C, Previato JO. Addition of alpha-O-GlcNAc to threonine residues define the post-translational modification of mucin-like molecules in Trypanosoma cruzi. Glycoconj J. 2013; 30:659–666. https://doi.org/10.1007/s10719-013-9469-7 PMID: 23430107
Ossysek K, Uchański T, Kulesza M, Bzowska M, Klaus T, Woś K, et al. A New expression vector facilitating production and functional analysis of scFv antibody fragments selected from Tomlinson I+J phagemid libraries. Immunol Lett. 2015; 167:95–102. https://doi.org/10.1016/j.imlet.2015.07.005 PMID: 26219832
Lim KP, Li H, Nathan S. Expression and purification of a recombinant scFv towards the exotoxin of the pathogen, Burkholderia pseudomallei. J Microbiol. 2004; 42:126–132 PMID: 15357306
Yusakul G, Sakamoto S, Nuntawong P, Tanaka H, Morimoto S. Different expression systems resulted in varied binding properties of anti–paclitaxel single–chain variable fragment antibody clone 1C2. J Nat Med. 2018; 72:310–316. https://doi.org/10.1007/s11418-017-1136-z PMID: 29027080
Yoshida N, Dorta ML, Ferreira AT, Oshiro ME, Mortara RA, Acosta-Serrano A, et l. Removal of sialic acid from mucin-like surface molecules of Trypanosoma cruzi metacyclic trypomastigotes enhances parasite-host cell interaction. Mol Biochem Parasitol. 1997; 84:57–67. https://doi.org/10.1016/s0166- 6851(96)02783-1 PMID: 9041521
Lebozec K, Jandrot-Perrus M, Avenard G, Favre-Bulle O, Billiald P. Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: A case study prior to pharmaceutical development. N Biotechnol. 2018; 44:31–40. https://doi.org/10.1016/j.nbt. 2018.04.006 PMID: 29689305
Cámara MLM, Balouz V, Centeno Cameán C, Cori CR, Kashiwagi GA, Gil SA, et al. Trypanosoma cruzi surface mucins are involved in the attachment to the Triatoma infestans rectal ampoule. PLoS Negl Trop Dis. 2019; 13(5):e0007418. https://doi.org/10.1371/journal.pntd.0007418 PMID: 31107901
dc.source.bibliographicCitation.por.fl_str_mv Silveira AC, Dias JCP. O controle da transmissão vetorial. Rev Soc Bras Med Trop 44 Supplement. 2011; 2:52–63. https://doi.org/10.1590/S0037-86822011000800009
Ministério da Saúde (BR) Secretaria de vigilância em saúde. Guía de vigilância em saúde. Ministério da Saúde, Brasília, 2007
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/741868bc-6371-408b-a8cd-9920dc31c536/download
https://bonga.unisimon.edu.co/bitstreams/b136a1ea-2913-46bb-a3e0-8b62b5a7d5cb/download
https://bonga.unisimon.edu.co/bitstreams/c51cf17a-5641-4adb-8e3d-6ca989285f48/download
https://bonga.unisimon.edu.co/bitstreams/3366bc9b-2dd5-487d-bcb7-685c0c7baa32/download
https://bonga.unisimon.edu.co/bitstreams/27ac6acf-b9d3-4bc2-a9d5-31a63cb27c1d/download
https://bonga.unisimon.edu.co/bitstreams/806d1e9a-3c5f-475f-b8e2-8a3d4e8ce245/download
https://bonga.unisimon.edu.co/bitstreams/5bf94d67-1081-412c-8474-87e2b1f79fb7/download
bitstream.checksum.fl_str_mv 24dc119ead9381d8526496009db8762e
733bec43a0bf5ade4d97db708e29b185
4460e5956bc1d1639be9ae6146a50347
266e946fea42f1be723d4968d1da83ae
31a571561a65c5b8c1f100df1fed5f72
9872de803d4463b43cb5b46b01a93e45
b09869b2a74269d84c1d7811078ccaed
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076104873345024
spelling Kalempa Demeu, Lara Maria08070d37-cced-4df7-a954-2aa7354a8b27Jahn Soares, Rodrigo37740310-bef4-4479-b5f0-70ed085beef5Severo Miranda, Julianae0c651f8-daca-4091-b478-ef677f594c5ePacheco-Lugo, Lisandro A.3d97b683-f7ae-40dd-86f5-c5ffbd48e0c3Gonçalves Oliveira, Kelind4a10b64-8218-4ee0-be21-5e2556dca9e0Cortez Plaza, Cristian Andrésf7fc768a-cd8f-4811-be43-c977fd8952f9Billiald, Philippee3547120-1c68-4bbe-9123-64095c376773Ferreira de Moura, Juliana9195a05b-215a-451f-b3ad-b1dc7bcc7108Yoshida, Nobukoc1b9e7a2-8ed7-45cf-a77d-4bc7e252f4baMagalhães Alvarenga, Larissaf699fd5a-6d0a-443a-8ec8-b590c63f5c17Duarte DaRocha, Wanderson4d598e19-6e81-4a06-8774-59bcc6bd344f2019-10-17T14:51:31Z2019-10-17T14:51:31Z2019-10https://hdl.handle.net/20.500.12442/4168Trypanosoma cruzi is a flagellate protozoan pathogen that causes Chagas disease. Currently there is no preventive treatment and the efficiency of the two drugs available is limited to the acute phase. Therefore, there is an unmet need for innovative tools to block transmission in endemic areas. In this study, we engineered a novel recombinant molecule able to adhere to the T. cruzi surface, termed scFv-10D8, that consists of a single-chain variable fragment (scFv) derived from mAb-10D8 that targets gp35/50. The synthetic gene encoding scFv-10D8 was cloned and fused to a 6×His tag and expressed in a prokaryotic expression system. Total periplasmic or 6xHis tag affinity-purified fractions of scFv-10D8 retained the capacity to bind to gp35/50, as shown by Western blot analyses. Pre-incubation of metacyclic trypomastigotes with scFv-10D8 showed a remarkable reduction in cell invasion capacity. Our results suggest that scFv-10D8 can be used in a paratransgenic approach to target parasites in insect vectors, avoiding dissemination of infective forms. Such advances in the development of this functional molecule will surely prompt the improvement of alternative strategies to control Chagas disease by targeting mammalian host stages.engJavier Marcelo Di Noia, Institut de recherches cliniques de Montreal, CANADAAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2PLoS ONE14(10), (2019)https://doi.org/10.1371/journal. pone.0223773Tibayrenc M, Barnabe´ C, Telleria J. Reticulate Evolution in: Medical and Epidemiological Implications In: Telleria J, Tibayrenc M, editors. American trypanosomiasis: Chagas disease One hundred years of research. Burlington: Elsevier; 2010. 475–488.World Health Organization Health Topics, Chagas disease, 2017. www.who.int/topics/chagas_disease/ en/. Accessed 04 Oct 2017Coura JR. The main sceneries of Chagas disease transmission. The vectors, blood and oral transmissions: a comprehensive review. Mem Inst Oswaldo Cruz. 2015; 110:277–282. https://doi.org/10.1590/ 0074-0276140362 PMID: 25466622Browne AJ, Guerra CA, Alves RV, da Costa VM, Wilson AL, Pigott DM, et al. The contemporary distribution of Trypanosoma cruzi infection in humans, alternative hosts and vectors. Sci Data. 2017; 4:170050. https://doi.org/10.1038/sdata.2017.50 PMID: 28398292World Health Organization (2015) Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec Feb 90:33–43Gurgel-Gonc¸alves R, Galvão C, Costa J, Peterson AT. Geographic distribution of Chagas disease vectors in brazil based on ecological niche modeling. J Trop Med. 2012;:Article ID 705326. https://doi.org/ 10.1155/2012/705326 PMID: 22523500Vinhaes MC, de Oliveira SV, Reis PO, de Lacerda Sousa AC, Silva RA, Obara MT,et al. Assessing the vulnerability of Brazilian municipalities to the vectorial transmission of Trypanosoma cruzi using multicriteria decision analysis. Acta Trop. 2014; 137:105–110. https://doi.org/10.1016/j.actatropica.2014.05. 007 PMID: 24857942(2016) Brazilian consensus on Chagas disease. Epidemiol Serv Saúde, Brasília 25(nu´m. esp.):7–86Mougabure-Cueto G, Picollo MI. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 2015; 149:70–85. https://doi.org/10.1016/j.actatropica.2015.05. 014 PMID: 26003952Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol. 2003; 19:495–501. https://doi.org/10.1016/j.pt.2003.09.001 PMID: 14580960Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg. 1987; 81:755–759. https://doi.org/10.1016/ 0035-9203(87)90020-4 PMID: 3130683Teston AP, Monteiro WM, Reis D, Bossolani GD, Gomes ML, De Araújo SM, et al. In vivo susceptibility to Benznidazole of Trypanosoma cruzi strains from the western Brazilian Amazon. Trop Med Int Health. 2013; 18:85–95. https://doi.org/10.1111/tmi.12014 PMID: 23130989Baral TN, Magez S, Stijlemans B, Conrath K, Vanhollebeke B, Pays E, et al. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med. 2016; 12:580–584. https://doi.org/10.1038/nm1395 PMID: 16604085Arias JL, Unciti-Broceta JD, Maceira J, Del Castillo T, Hernández-Quero J, Magez S, et al. Nanobody conjugated PLGA nanoparticles for active targeting of African trypanosomiasis. J Control Release. 2014; 197 10:190–198. https://doi.org/10.1016/j.jconrel.2014.11.002 PMID: 25445702Unciti-Broceta JD, Arias JL, Maceira J, Soriano M, Ortiz-González M, Hernández-Quero J, et al. Specific cell targeting therapy bypasses drug resistance mechanisms in African trypanosomiasis. PLoS Pathog. 2015; 25:e1004942(6). https://doi.org/10.1371/journal.ppat.1004942 PMID: 26110623Stijlemans B, Caljon G, Natesan SK, Saerens D, Conrath K, Pérez-Morga D, et al. High affinity nanobodies against the Trypanosome brucei VSG are potent trypanolytic agents that block endocytosis. PLoS Pathog. 2011; 7:e1002072. https://doi.org/10.1371/journal.ppat.1002072 PMID: 21698216Berasategui A, Shukla S, Salem H, Kaltenpoth M. Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol. 2016; 100:1567–1577. https://doi.org/10.1007/s00253-015-7186-9 PMID: 26659224Hurwitz I, Fieck A, Read A, Hillesland H, Klein N, Kang A, et al. Paratransgenic control of vector borne diseases. Int J Biol Sci. 2011; 7:1334–1344. https://doi.org/10.7150/ijbs.7.1334 PMID: 22110385Durvasula RV, Sundaram RK, Kirsch P, Hurwitz I, Crawford CV, Dotson E, et al. Genetic transformation of a Corynebacterial symbiont from the Chagas disease vector Triatoma infestans. Exp Parasitol. 2018; 119:94–98. https://doi.org/10.1016/j.exppara.2007.12.020 PMID: 18331732Matthews S, Rao VS, Durvasula RV. Modeling horizontal gene transfer (HGT) in the gut of the Chagas disease vector Rhodnius prolixus. Parasites Vectors. 2011; 4:77. https://doi.org/10.1186/1756-3305-4- 77 PMID: 21569540De Vooght CG, De Ridder K, Van Den Abbeele J. Delivery of a functional anti-trypanosome Nanobody in different tsetse fly tissues via a bacterial symbiont, Sodalis glossinidius. Microb Cell Factories. 2014; 13:156. https://doi.org/10.1186/s12934-014-0156-6 PMID: 25376234Yoshida N, Mortara RA, Araguth MF, Gonzalez JC, Russo M. Metacyclic neutralizing effect of monoclonal antibody 10D8 directed to the 35- and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi. Infect Immun. 1989; 57:1663–1667 PMID: 2656520Mortara RA, Da Silva S, Araguth MF, Blanco SA, Yoshida N. Polymorphism of the 35- and 50-kilodalton surface glycoconjugates of Trypanosoma cruzi metacyclic trypomastigotes. Infect Immun. 1992; 60:4673–4678 PMID: 1328061Urban I, Santurio LB, Chidichimo A, Yu H, Chen X, Mucci J, et l. Molecular diversity of the Trypanosoma cruzi TcSMUG family of mucin genes and proteins. Biochem J. 2011; 438:303–313. https://doi.org/10. 1042/BJ20110683 PMID: 21651499Yoshida N. Molecular basis of mammalian cell invasion by Trypanosoma cruzi. An Acad Bras Cienc. 2006; 78:87–111. https://doi.org//S0001-37652006000100010 PMID: 16532210Jones C, Todeschini AR, Agrellos OA, Previato JO, Mendonc¸a-Previato L. Heterogeneity in the biosynthesis of mucin O-glycans from Trypanosoma cruzi tulahuen strain with the expression of novel galactofuranosyl- containing oligosaccharides. Biochemistry. 2004/ 43(37):11889–97. https://doi.org/10.1021/ bi048942u PMID: 15362875Milenic DE, Yokota T, Filpula DR, Finkelman MA, Dodd SW, Wood JF, et al. Construction, binding properties, metabolism, and tumor targeting of a single-chain Fv derived from the pancarcinoma monoclonal antibody CC49. Cancer Res. 1991; 51:6363–71 PMID: 1933899Kuan CT, Srivastava N, Mclendon RE, Marasco WA, Zalutsky MR, Bigner DD. Recombinant singlechain variable fragment antibodies against extracellular epitopes of human multidrug resistance protein MRP3 for targeting malignant gliomas. Int J Cancer. 2010; 127:598–611. https://doi.org/10.1002/ijc. 25062 PMID: 19937796Crivianu-Gaita V, ThompsonM (2016) Aptamers, antibody scFv, and antibody Fab’ fragments: an overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron. 2016; 85:32–45. https://doi.org/10.1016/j.bios.2016.04.091 PMID: 27155114Fields C, O’Connell D, Xiao S, Lee GU, Billiald P, Muzard J. Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc. 2013; 8:1125–1148. https://doi.org/10.1038/nprot.2013.057 PMID: 23680984Lyskov S, Chou FC, Conchúir SO´ , Der BS, Drew K, Kuroda D, et al. Serverification of molecular modeling applications: the Rosetta online server that includes everyone (ROSIE). PLoS One. 2013 8: e63906. https://doi.org/10.1371/journal.pone.0063906 PMID: 23717507Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW. Protein docking using case-based reasoning. Proteins. 2013; 81:2150–2158. https://doi.org/10.1002/prot.24433 PMID: 24123156Mcguffin LJ, Atkins JD, Salehe BR, Shuid AN, Roche DB. IntFOLD: an integrated server for modelling protein structures and functions from amino acid sequences. Nucleic Acids Res. 2015; 43:W169– W173. https://doi.org/10.1093/nar/gkv236 PMID: 25820431Karim-Silva S, Moura Jd, Noiray M, Minozzo JC, Aubrey N, Alvarenga LM, et al. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism. Immunol Lett. 2016; 176:90–6. https://doi.org/10.1016/j.imlet.2016.05.019 PMID: 27288291Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Typanosoma cruzi intraespecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009; 104:1051–1054. https://doi.org/10.1590/s0074-02762009000700021 PMID: 20027478Contreras VT, Araujo-Jorge TC, Bonaldo MC, Thomaz N, Barbosa HS, Meirelles N, et al. Biological aspect of the Dm28c clone of Trypanosoma cruzi after metacyclogenesis in chemically defined media. Mem Inst Oswaldo Cruz. 1988; 83:123–133. https://doi.org/10.1590/s0074-02761988000100016 PMID: 3074237Teixeira MMG, Yoshida N. Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol. 1986; 18:271–282. https://doi. org/10.1016/0166-6851(86)90085-x PMID: 3515178Serrano AA, Schenkman S, Yoshida N, Mehlert A, Richardson JM, Ferguson MA. The lipid structure of the glycosylphosphatidylinositol-anchored mucin-like sialic acid acceptors of Trypanosoma cruzi changes during parasite differentiation from epimastigotes to infective metacyclic trypomastigote forms. J Biol Chem. 1995; 270:27244–27253. https://doi.org/10.1074/jbc.270.45.27244 PMID: 7592983Mcgwire BS, Olson CL, Tack BF, Engman DM. Killing of African trypanosomes by antimicrobial peptides. J Infect Dis. 2003; 188:146–152. https://doi.org/10.1086/375747 PMID: 12825184Smulski C, Labovsky V, Levy G, Hontebeyrie M, Hoebeke J, Levin MJ. Structural basis of the crossreaction between an antibody to the Trypanosoma cruzi ribosomal P2β protein and the human β1 adrenergic receptor. FASEB J. 2006; 20:1396–1406. https://doi.org/10.1096/fj.05-5699com PMID: 16816115Ayub MJ, Nyambega B, Simonetti L, Duffy T, Longhi SA, Gómez KA, et al. Selective blockade of trypanosomatid protein synthesis by a recombinant antibody anti-Trypanosoma cruzi P2β protein. PLOS ONE. 2012: 7:e36233. https://doi.org/10.1371/journal.pone.0036233 PMID: 22570698Mendonc¸a-Previato L, Penha L, Garcez TC, Jones C, Previato JO. Addition of alpha-O-GlcNAc to threonine residues define the post-translational modification of mucin-like molecules in Trypanosoma cruzi. Glycoconj J. 2013; 30:659–666. https://doi.org/10.1007/s10719-013-9469-7 PMID: 23430107Ossysek K, Uchański T, Kulesza M, Bzowska M, Klaus T, Woś K, et al. A New expression vector facilitating production and functional analysis of scFv antibody fragments selected from Tomlinson I+J phagemid libraries. Immunol Lett. 2015; 167:95–102. https://doi.org/10.1016/j.imlet.2015.07.005 PMID: 26219832Lim KP, Li H, Nathan S. Expression and purification of a recombinant scFv towards the exotoxin of the pathogen, Burkholderia pseudomallei. J Microbiol. 2004; 42:126–132 PMID: 15357306Yusakul G, Sakamoto S, Nuntawong P, Tanaka H, Morimoto S. Different expression systems resulted in varied binding properties of anti–paclitaxel single–chain variable fragment antibody clone 1C2. J Nat Med. 2018; 72:310–316. https://doi.org/10.1007/s11418-017-1136-z PMID: 29027080Yoshida N, Dorta ML, Ferreira AT, Oshiro ME, Mortara RA, Acosta-Serrano A, et l. Removal of sialic acid from mucin-like surface molecules of Trypanosoma cruzi metacyclic trypomastigotes enhances parasite-host cell interaction. Mol Biochem Parasitol. 1997; 84:57–67. https://doi.org/10.1016/s0166- 6851(96)02783-1 PMID: 9041521Lebozec K, Jandrot-Perrus M, Avenard G, Favre-Bulle O, Billiald P. Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: A case study prior to pharmaceutical development. N Biotechnol. 2018; 44:31–40. https://doi.org/10.1016/j.nbt. 2018.04.006 PMID: 29689305Cámara MLM, Balouz V, Centeno Cameán C, Cori CR, Kashiwagi GA, Gil SA, et al. Trypanosoma cruzi surface mucins are involved in the attachment to the Triatoma infestans rectal ampoule. PLoS Negl Trop Dis. 2019; 13(5):e0007418. https://doi.org/10.1371/journal.pntd.0007418 PMID: 31107901Silveira AC, Dias JCP. O controle da transmissão vetorial. Rev Soc Bras Med Trop 44 Supplement. 2011; 2:52–63. https://doi.org/10.1590/S0037-86822011000800009Ministério da Saúde (BR) Secretaria de vigilância em saúde. Guía de vigilância em saúde. Ministério da Saúde, Brasília, 2007Trypanosoma cruziParasitic diseasesPeriplasmChagas diseaseProtein extractionProtozoan infectionsSequence databasesTrypomastigotesEngineering a single-chain antibody against Trypanosoma cruzi metacyclic trypomastigotes to block cell invasionarticlehttp://purl.org/coar/resource_type/c_6501ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1171162https://bonga.unisimon.edu.co/bitstreams/741868bc-6371-408b-a8cd-9920dc31c536/download24dc119ead9381d8526496009db8762eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/b136a1ea-2913-46bb-a3e0-8b62b5a7d5cb/download733bec43a0bf5ade4d97db708e29b185MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/c51cf17a-5641-4adb-8e3d-6ca989285f48/download4460e5956bc1d1639be9ae6146a50347MD52TEXTEngineering_Single-chain_antibody_against.pdf.txtEngineering_Single-chain_antibody_against.pdf.txtExtracted texttext/plain52612https://bonga.unisimon.edu.co/bitstreams/3366bc9b-2dd5-487d-bcb7-685c0c7baa32/download266e946fea42f1be723d4968d1da83aeMD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain59428https://bonga.unisimon.edu.co/bitstreams/27ac6acf-b9d3-4bc2-a9d5-31a63cb27c1d/download31a571561a65c5b8c1f100df1fed5f72MD56THUMBNAILEngineering_Single-chain_antibody_against.pdf.jpgEngineering_Single-chain_antibody_against.pdf.jpgGenerated Thumbnailimage/jpeg1722https://bonga.unisimon.edu.co/bitstreams/806d1e9a-3c5f-475f-b8e2-8a3d4e8ce245/download9872de803d4463b43cb5b46b01a93e45MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5715https://bonga.unisimon.edu.co/bitstreams/5bf94d67-1081-412c-8474-87e2b1f79fb7/downloadb09869b2a74269d84c1d7811078ccaedMD5720.500.12442/4168oai:bonga.unisimon.edu.co:20.500.12442/41682024-08-14 21:52:21.169http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u