Algoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learning
Durante la ejecución del proyecto actual de Machine learning en tiempo de datos, se inicia con la identificación de variables para su análisis, recurriendo a los historiales de empresas u organizaciones dedicadas a recopilar la información necesaria en formato de conjuntos de datos. Estos conjuntos...
- Autores:
-
Cruz Santos, Edwin Ferney
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universitaria Remington
- Repositorio:
- Repositorio institucional Uniremington
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniremington.edu.co:123456789/2653
- Acceso en línea:
- https://repositorio.uniremington.edu.co/handle/123456789/2653
- Palabra clave:
- Puntos calientes
Atención de emergencias
Análisis de datos
Cambios climáticos
Aprendizaje automático (Inteligencia artificial)
Toma de decisiones
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
URemingtn2_703346a9c4dfcc7271ee9f358c60e394 |
---|---|
oai_identifier_str |
oai:repositorio.uniremington.edu.co:123456789/2653 |
network_acronym_str |
URemingtn2 |
network_name_str |
Repositorio institucional Uniremington |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Algoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learning |
title |
Algoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learning |
spellingShingle |
Algoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learning Puntos calientes Atención de emergencias Análisis de datos Cambios climáticos Aprendizaje automático (Inteligencia artificial) Toma de decisiones |
title_short |
Algoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learning |
title_full |
Algoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learning |
title_fullStr |
Algoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learning |
title_full_unstemmed |
Algoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learning |
title_sort |
Algoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learning |
dc.creator.fl_str_mv |
Cruz Santos, Edwin Ferney |
dc.contributor.advisor.none.fl_str_mv |
Briñez de León, Juan Carlos |
dc.contributor.author.none.fl_str_mv |
Cruz Santos, Edwin Ferney |
dc.subject.spa.fl_str_mv |
Puntos calientes Atención de emergencias Análisis de datos |
topic |
Puntos calientes Atención de emergencias Análisis de datos Cambios climáticos Aprendizaje automático (Inteligencia artificial) Toma de decisiones |
dc.subject.lemb.none.fl_str_mv |
Cambios climáticos Aprendizaje automático (Inteligencia artificial) Toma de decisiones |
description |
Durante la ejecución del proyecto actual de Machine learning en tiempo de datos, se inicia con la identificación de variables para su análisis, recurriendo a los historiales de empresas u organizaciones dedicadas a recopilar la información necesaria en formato de conjuntos de datos. Estos conjuntos de datos son esenciales para facilitar el aprendizaje del modelo y la toma de decisiones adecuadas, así como para fomentar un aprendizaje continuo a partir de la información que se recopila diariamente. Para llevar a cabo este proceso, se han seleccionado las condiciones climáticas que podrían haber desencadenado posibles incendios forestales en Colombia durante el año 2022. A partir de estos mismos datos, es posible identificar las zonas más afectadas durante el período mencionado. Esto, a su vez, permite desarrollar estrategias para abordar la situación en dichas zonas, teniendo en cuenta la magnitud del impacto. La extensión geográfica de los incendios y su intensidad son variables clave que se tienen en cuenta al diseñar acciones preventivas y de respuesta. Es importante destacar que el análisis de datos no se limita únicamente a la identificación de áreas afectadas, sino que también implica la evaluación de factores subyacentes que contribuyen a la propagación y la severidad de los incendios forestales. Esto puede incluir factores como la densidad forestal, la presencia de vías de acceso, la disponibilidad de recursos para combatir incendios y las condiciones climáticas locales. En resumen, el proyecto actual de Machine learning en tiempo de datos se centra en la identificación y análisis de variables clave relacionadas con los incendios forestales en Colombia en el año 2022, con el objetivo de desarrollar estrategias efectivas para la prevención y respuesta ante futuros eventos similares. Este enfoque integrado, que combina la recopilación y análisis de datos con técnicas avanzadas de modelado predictivo, es fundamental para mejorar la capacidad de anticipación y gestión de riesgos en el contexto de la gestión forestal y la protección del medio ambiente. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-04-15T20:40:18Z |
dc.date.available.none.fl_str_mv |
2024-04-15T20:40:18Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.uniremington.edu.co/handle/123456789/2653 |
url |
https://repositorio.uniremington.edu.co/handle/123456789/2653 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Corporación Universitaria Remington, 2024 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) Derechos Reservados - Corporación Universitaria Remington, 2024 https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
23 p. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universitaria Remington |
dc.publisher.place.spa.fl_str_mv |
Medellín (Antioquia, Colombia) |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
dc.publisher.program.spa.fl_str_mv |
Ingeniería de Sistemas |
institution |
Corporación Universitaria Remington |
bitstream.url.fl_str_mv |
https://repositorio.uniremington.edu.co/bitstreams/6c1fdd27-37b8-4eeb-bffe-41d56bb98368/download https://repositorio.uniremington.edu.co/bitstreams/07c6787a-4c2d-41ee-8630-dbf971eb9c3d/download https://repositorio.uniremington.edu.co/bitstreams/8a867ebe-330b-4d15-a36c-2e75694535ec/download https://repositorio.uniremington.edu.co/bitstreams/d848fb38-449d-4214-8b68-82a2e63158f8/download https://repositorio.uniremington.edu.co/bitstreams/199c4415-7d1a-4855-96c8-6f1c09d15fde/download |
bitstream.checksum.fl_str_mv |
abfc3bbdfac44c026c9842295278f452 8a4605be74aa9ea9d79846c1fba20a33 6f4bf03695c0d3b03406366a5e02f831 7bb2cecbca6ebbc1af1503f2afb46df3 da6a85ea7aed29645effe8fa7fabdebe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UNIREMINGTON |
repository.mail.fl_str_mv |
biblioteca@uniremington.edu.co |
_version_ |
1812100420516970496 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Derechos Reservados - Corporación Universitaria Remington, 2024https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Briñez de León, Juan CarlosCruz Santos, Edwin Ferney2024-04-15T20:40:18Z2024-04-15T20:40:18Z2024https://repositorio.uniremington.edu.co/handle/123456789/2653Durante la ejecución del proyecto actual de Machine learning en tiempo de datos, se inicia con la identificación de variables para su análisis, recurriendo a los historiales de empresas u organizaciones dedicadas a recopilar la información necesaria en formato de conjuntos de datos. Estos conjuntos de datos son esenciales para facilitar el aprendizaje del modelo y la toma de decisiones adecuadas, así como para fomentar un aprendizaje continuo a partir de la información que se recopila diariamente. Para llevar a cabo este proceso, se han seleccionado las condiciones climáticas que podrían haber desencadenado posibles incendios forestales en Colombia durante el año 2022. A partir de estos mismos datos, es posible identificar las zonas más afectadas durante el período mencionado. Esto, a su vez, permite desarrollar estrategias para abordar la situación en dichas zonas, teniendo en cuenta la magnitud del impacto. La extensión geográfica de los incendios y su intensidad son variables clave que se tienen en cuenta al diseñar acciones preventivas y de respuesta. Es importante destacar que el análisis de datos no se limita únicamente a la identificación de áreas afectadas, sino que también implica la evaluación de factores subyacentes que contribuyen a la propagación y la severidad de los incendios forestales. Esto puede incluir factores como la densidad forestal, la presencia de vías de acceso, la disponibilidad de recursos para combatir incendios y las condiciones climáticas locales. En resumen, el proyecto actual de Machine learning en tiempo de datos se centra en la identificación y análisis de variables clave relacionadas con los incendios forestales en Colombia en el año 2022, con el objetivo de desarrollar estrategias efectivas para la prevención y respuesta ante futuros eventos similares. Este enfoque integrado, que combina la recopilación y análisis de datos con técnicas avanzadas de modelado predictivo, es fundamental para mejorar la capacidad de anticipación y gestión de riesgos en el contexto de la gestión forestal y la protección del medio ambiente.PregradoIngeniero(a) de Sistemas23 p.application/pdfspaCorporación Universitaria RemingtonMedellín (Antioquia, Colombia)Facultad de IngenieríasIngeniería de SistemasPuntos calientesAtención de emergenciasAnálisis de datosCambios climáticosAprendizaje automático (Inteligencia artificial)Toma de decisionesAlgoritmo computacional para el análisis y toma de decisiones de puntos calientes en el año 2021 y 2022 utilizando estrategias de machine learningTrabajo de grado - Pregradoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Textinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPTesis/Trabajo de grado - Monografía - PregradoPublicationORIGINALRIU-PRE-2024 Algoritmo computacional analisis.pdfRIU-PRE-2024 Algoritmo computacional analisis.pdfapplication/pdf605819https://repositorio.uniremington.edu.co/bitstreams/6c1fdd27-37b8-4eeb-bffe-41d56bb98368/downloadabfc3bbdfac44c026c9842295278f452MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.uniremington.edu.co/bitstreams/07c6787a-4c2d-41ee-8630-dbf971eb9c3d/download8a4605be74aa9ea9d79846c1fba20a33MD52Cesión Derechos_TG 3.pdfapplication/pdf305840https://repositorio.uniremington.edu.co/bitstreams/8a867ebe-330b-4d15-a36c-2e75694535ec/download6f4bf03695c0d3b03406366a5e02f831MD53TEXTRIU-PRE-2024 Algoritmo computacional analisis.pdf.txtRIU-PRE-2024 Algoritmo computacional analisis.pdf.txtExtracted texttext/plain21468https://repositorio.uniremington.edu.co/bitstreams/d848fb38-449d-4214-8b68-82a2e63158f8/download7bb2cecbca6ebbc1af1503f2afb46df3MD54THUMBNAILRIU-PRE-2024 Algoritmo computacional analisis.pdf.jpgRIU-PRE-2024 Algoritmo computacional analisis.pdf.jpgGenerated Thumbnailimage/jpeg2989https://repositorio.uniremington.edu.co/bitstreams/199c4415-7d1a-4855-96c8-6f1c09d15fde/downloadda6a85ea7aed29645effe8fa7fabdebeMD55123456789/2653oai:repositorio.uniremington.edu.co:123456789/26532024-05-16 14:11:12.612https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Corporación Universitaria Remington, 2024open.accesshttps://repositorio.uniremington.edu.coRepositorio UNIREMINGTONbiblioteca@uniremington.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |