Prospección de los Insectos Comestibles como fuente de proteína animal para el consumo humano

El crecimiento poblacional acelerado tiene efectos sobre el uso del suelo, ya que una mayor densidad poblacional genera una mayor demanda de productos alimenticios lo cual induce a que la actividad económica agropecuaria, que en Colombia es una de las principales, ocupe más territorios. La expansión...

Full description

Autores:
Ravagli Castillo, Andrea Carolina
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.unimilitar.edu.co:10654/38939
Acceso en línea:
http://hdl.handle.net/10654/38939
Palabra clave:
INSECTOS COMO ALIMENTO
PROTEINAS
IMPACTO AMBIENTAL
SEGURIDAD ALIMENTICIA
Edible insects
Animal protein
Nutritional value
Entomophagy
Environmental impact
Food safety
Insectos comestibles
Proteína animal
Valor nutricional
Entomofagia
Impacto ambiental
Seguridad alimentaria
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UNIMILTAR2_e94c49e04a0bee47126318a921f574e3
oai_identifier_str oai:repository.unimilitar.edu.co:10654/38939
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.spa.fl_str_mv Prospección de los Insectos Comestibles como fuente de proteína animal para el consumo humano
dc.title.translated.spa.fl_str_mv Prospect for Edible Insects as a source of animal protein for human consumption
title Prospección de los Insectos Comestibles como fuente de proteína animal para el consumo humano
spellingShingle Prospección de los Insectos Comestibles como fuente de proteína animal para el consumo humano
INSECTOS COMO ALIMENTO
PROTEINAS
IMPACTO AMBIENTAL
SEGURIDAD ALIMENTICIA
Edible insects
Animal protein
Nutritional value
Entomophagy
Environmental impact
Food safety
Insectos comestibles
Proteína animal
Valor nutricional
Entomofagia
Impacto ambiental
Seguridad alimentaria
title_short Prospección de los Insectos Comestibles como fuente de proteína animal para el consumo humano
title_full Prospección de los Insectos Comestibles como fuente de proteína animal para el consumo humano
title_fullStr Prospección de los Insectos Comestibles como fuente de proteína animal para el consumo humano
title_full_unstemmed Prospección de los Insectos Comestibles como fuente de proteína animal para el consumo humano
title_sort Prospección de los Insectos Comestibles como fuente de proteína animal para el consumo humano
dc.creator.fl_str_mv Ravagli Castillo, Andrea Carolina
dc.contributor.advisor.none.fl_str_mv Pedraza Nájar, Ximena Lucía
dc.contributor.author.none.fl_str_mv Ravagli Castillo, Andrea Carolina
dc.subject.lemb.spa.fl_str_mv INSECTOS COMO ALIMENTO
PROTEINAS
IMPACTO AMBIENTAL
SEGURIDAD ALIMENTICIA
topic INSECTOS COMO ALIMENTO
PROTEINAS
IMPACTO AMBIENTAL
SEGURIDAD ALIMENTICIA
Edible insects
Animal protein
Nutritional value
Entomophagy
Environmental impact
Food safety
Insectos comestibles
Proteína animal
Valor nutricional
Entomofagia
Impacto ambiental
Seguridad alimentaria
dc.subject.keywords.spa.fl_str_mv Edible insects
Animal protein
Nutritional value
Entomophagy
Environmental impact
Food safety
dc.subject.proposal.spa.fl_str_mv Insectos comestibles
Proteína animal
Valor nutricional
Entomofagia
Impacto ambiental
Seguridad alimentaria
description El crecimiento poblacional acelerado tiene efectos sobre el uso del suelo, ya que una mayor densidad poblacional genera una mayor demanda de productos alimenticios lo cual induce a que la actividad económica agropecuaria, que en Colombia es una de las principales, ocupe más territorios. La expansión del uso del suelo para fines de ganadería es cada vez más predominante debido al alto consumo de proteína animal por parte de la población. El impacto ambiental que implica la ganadería comprende la compactación del suelo, destrucción de bosques nativos por deforestación, pérdida de la biodiversidad de fauna y flora, alteración de hábitats naturales, y mayor emisión de gases de efecto invernadero, entre otros. Por lo anterior, se hace imperante hallar alternativas de fuente de proteína animal que aminoren los impactos ambientales producto de la ganadería y para contribuir a la seguridad alimentaria ya que la producción de alimentos a futuro presenta importantes retos para atenuar el hambre crónica. De esta forma se presenta a los insectos comestibles como alternativa de fuente de proteína animal realizando una revisión bibliográfica que permita dilucidar los tipos de insectos que son aptos para consumo, las prácticas que se deben implementar para su recolección y cría, la sostenibilidad en la cría de insectos frente a la producción ganadera convencional, eficiencia de conversión, valor nutricional, seguridad alimentaria, riesgos y legislación. El presente artículo destaca la implementación de cultivos de producción de insectos comestibles como una alternativa prometedora por sus beneficios ambientales y aportes nutricionales.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-01T19:45:38Z
dc.date.available.none.fl_str_mv 2021-10-01T19:45:38Z
dc.date.issued.none.fl_str_mv 2021-05-20
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Especialización
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.*.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10654/38939
dc.identifier.instname.spa.fl_str_mv instname:Universidad Militar Nueva Granada
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Universidad Militar Nueva Granada
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unimilitar.edu.co
url http://hdl.handle.net/10654/38939
identifier_str_mv instname:Universidad Militar Nueva Granada
reponame:Repositorio Institucional Universidad Militar Nueva Granada
repourl:https://repository.unimilitar.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: a critical review. Comprehensive Reviews in Food Science and Food Safety, 12(3), 296-313.
Berg, J., Wendin, K., Langton, M., Josell, Å, & Davidsson, F. (2017). State Of The Art report-: insects as food and feed. Annals of Experimental Biology, 5(2), 1-9.
Bessa, L. W., Pieterse, E., Sigge, G., & Hoffman, L. C. (2020). Insects as human food; from farm to fork. Journal of the Science of Food and Agriculture, 100(14), 5017-5022.
Cerritos, R. (2009). Insects as food: an ecological, social and economical approach. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4(27), 1-10.
Collavo, A., Glew, R. H., Huang, Y., Chuang, L., Bosse, R., & Paoletti, M. G. (2005). House cricket small-scale farming. Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails, 27, 515-540.
DANE. Departamento Administrativo Nacional de Estadística. (2016). Tercer Censo Nacional Agropecuario. La mayor operación estadística del campo colombiano en los últimos 45 años. Tomo 2, Resultados. https://www.dane.gov.co/files/images/foros/foro-de-entrega-de-resultados-y-cierre-3-censo-nacional-agropecuario/CNATomo2-Resultados.pdf
de Castro, Ruann Janser Soares, Ohara, A., dos Santos Aguilar, Jessika Gonçalves, & Domingues, M. A. F. (2018). Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in Food Science & Technology, 76, 82-89.
Deroy, O., Reade, B., & Spence, C. (2015). The insectivore’s dilemma, and how to take the West out of it. Food Quality and Preference, 44, 44-55.
Dobermann, D., Swift, J. A., & Field, L. M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293-308.
Edijala, J. K., Egbogbo, O., & Anigboro, A. A. (2009). Proximate composition and cholesterol concentrations of Rhynchophorus phoenicis and Oryctes monoceros larvae subjected to different heat treatments. African Journal of Biotechnology, 8(10)
Ekop, E. A., Udoh, A. I., & Akpan, P. E. (2010). Proximate and anti-nutrient composition of four edible insects in Akwa Ibom State, Nigeria. World J.Appl.Sci.Technol, 2(2), 224-231.
Erickson, M. C., Islam, M., Sheppard, C., Liao, J., & Doyle, M. P. (2004). Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. Journal of Food Protection, 67(4), 685-690.
FAO. Food and Agriculture Organization of the United Nations. (2012). Technical Consultation Meeting 23-25 January 2012, FAO, Rome, Italy. Assessing the Potential of Insects as Food and Feed in assuring Food Security. Summary Report. Recuperado el 11 de mayo 2021, de http://www.fao.org/3/an233e/an233e00.pdf
FAO. Food and Agriculture Organization of the United Nations. (2013). Food wastage footprint: impact on natural resources. Summary Report. Recuperado el 4 de mayo 2021, de http://www.fao.org/3/i3347e/i3347e.pdf
Fernandez‐Cassi, X., Supeanu, A., Jansson, A., Boqvist, S., & Vagsholm, I. (2018). Novel foods: a risk profile for the house cricket (Acheta domesticus). EFSA Journal, 16, e16082
Fombong, F. T., Van Der Borght, M., & Vanden Broeck, J. (2017). Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect Ruspolia differens. Insects, 8(3), 102.
Gahukar, R. T. (2016). Edible insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. Insects as sustainable food ingredients (pp. 85-111). Elsevier.
Gere, A., Zemel, R., Radványi, D., & Moskowitz, H. (2017). Insect based foods a nutritional point of view. Nutrition and Food Science International Journal, 4(3)
Grabowski, N. T., & Klein, G. (2017). Microbiology of cooked and dried edible Mediterranean field crickets (Gryllus bimaculatus) and superworms (Zophobas atratus) submitted to four different heating treatments. Food Science and Technology International, 23(1), 17-23.
Gravel, A., & Doyen, A. (2020). The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innovative Food Science & Emerging Technologies, 59, 102272.
Halloran, A., Hanboonsong, Y., Roos, N., & Bruun, S. (2017). Life cycle assessment of cricket farming in north-eastern Thailand. Journal of Cleaner Production, 156, 83-94.
Halloran, A., Roos, N., Eilenberg, J., Cerutti, A., & Bruun, S. (2016). Life cycle assessment of edible insects for food protein: a review. Agronomy for Sustainable Development, 36(4), 1-13.
Hartmann, C., Shi, J., Giusto, A., & Siegrist, M. (2015). The psychology of eating insects: A cross-cultural comparison between Germany and China. Food Quality and Preference, 44, 148-156.
Herrero, M., Wirsenius, S., Henderson, B., Rigolot, C., Thornton, P., Havlík, P., De Boer, I., & Gerber, P. J. (2015). Livestock and the environment: what have we learned in the past decade? Annual Review of Environment and Resources, 40, 177-202.
Hoekstra, A. Y. (2012). The hidden water resource use behind meat and dairy. Animal Frontiers, 2(2), 3-8.
House, J. (2016). Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications. Appetite, 107, 47-58.
Jongema, Y. (2017). List of edible insects of the World. Wageningen University & Research. Recuperado el 8 de mayo de 2021, de https://www.wur.nl/upload_mm/8/a/6/0fdfc700-3929-4a74-8b69-f02fd35a1696_Worldwide%20list%20of%20edible%20insects%202017.pdf
Kim, T., Yong, H. I., Kim, Y., Kim, H., & Choi, Y. (2019). Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food Science of Animal Resources, 39(4), 521.
Kinyuru, J. N., Kenji, G. M., Njoroge, S. M., & Ayieko, M. (2010). Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food and Bioprocess Technology, 3(5), 778-782.
Kouřimská, L., & Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22-26.
Lewis, A. (2015). Review of US state-level entomophagy regulation 2015. Recuperado el 7 de mayo de 2021, de http://pitt.afdo.org/uploads/1/5/9/4/15948626/ffp_lewis_adam_entomophagy_regulation_ppt_final_afdo_v2.pdf
Liu, Q., Tomberlin, J. K., Brady, J. A., Sanford, M. R., & Yu, Z. (2008). Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environmental Entomology, 37(6), 1525-1530.
Lundy, M. E., & Parrella, M. P. (2015). Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PloS One, 10(4), e0118785.
Madibela, O. R., Seitiso, T. K., Thema, T. F., & Letso, M. (2007). Effect of traditional processing methods on chemical composition and in vitro true dry matter digestibility of the Mophane worm (Imbrasia belina). Journal of Arid Environments, 68(3), 492-500.
MADR-UPRA. Ministerio de Agricultura y Desarrollo Rural – Unidad de Planificación Rural Agropecuaria. (2018). Identificación General de la Frontera Agrícola en Colombia, Escala 1:100.000 https://www.minagricultura.gov.co/Normatividad/Projects_Documents/IDENTIFICACION%20GENERAL%20DE%20LA%20FRONTERA%20.pdf
Manurung, R., Supriatna, A., Esyanthi, R. R., & Putra, R. E. (2016). Bioconversion of rice straw waste by black soldier fly larvae (Hermetia illucens L.): optimal feed rate for biomass production. J Entomol Zool Stud, 4(4), 1036-1041.
Marshall, D. L., Dickson, J. S., & Nguyen, N. H. (2016). Ensuring food safety in insect based foods: Mitigating microbiological and other foodborne hazards. Insects as sustainable food ingredients (pp. 223-253). Elsevier.
Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577-1600.
Melis, R., Braca, A., Mulas, G., Sanna, R., Spada, S., Serra, G., Fadda, M. L., Roggio, T., Uzzau, S., & Anedda, R. (2018). Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innovative Food Science & Emerging Technologies, 48, 138-149.
Ministerio de consumo. (2020). Situación de los insectos en la alimentación humana. Agencia española de seguridad alimentaria y nutrición. Recuperado el 7 de mayo de 2021, de https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/gestion_riesgos/INSECTOS_ALIMENTACION_.pdf
Murefu, T. R., Macheka, L., Musundire, R., & Manditsera, F. A. (2019). Safety of wild harvested and reared edible insects: A review. Food Control, 101, 209-224.
Mwangi, M. N., Oonincx, D. G., Stouten, T., Veenenbos, M., Melse-Boonstra, A., Dicke, M., & Van Loon, J. J. (2018). Insects as sources of iron and zinc in human nutrition. Nutrition Research Reviews, 31(2), 248-255.
Nowak, V., Persijn, D., Rittenschober, D., & Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193, 39-46.
Oonincx, D. G., & De Boer, I. J. (2012). Environmental impact of the production of mealworms as a protein source for humans–a life cycle assessment. PloS One, 7(12), e51145.
Oonincx, D., Van Huis, A., & Van Loon, J. (2015). Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. Journal of Insects as Food and Feed, 1(2), 131-139.
Palmer, L. (2016). Edible insects as a source of food allergens [Trabajo de Fin de Grado, Universidad de Nebraska]. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1076&context=foodscidiss
Patel, S., Suleria, H. A. R., & Rauf, A. (2019). Edible insects as innovative foods: Nutritional and functional assessments. Trends in Food Science & Technology, 86, 352-359.
Premalatha, M., Abbasi, T., Abbasi, T., & Abbasi, S. A. (2011). Energy-efficient food production to reduce global warming and ecodegradation: The use of edible insects. Renewable and Sustainable Energy Reviews, 15(9), 4357-4360.
Restrepo Franco, L. J. (2020). Identificación de la dinámica de disminución del ecosistema boscoso a causa de la expansión de actividades antrópicas, durante los años 2015-2020, en la cuenca del río Santa Rita, municipio de Andes, Antioquia. Tecnológico de Antioquia – Institución Universitaria.
Rumpold, B. A., & Schlüter, O. K. (2013a). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802-823.
Rumpold, B. A., & Schlüter, O. K. (2013b). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11.
Shah, R. M., Azhar, F., Shad, S. A., Walker, W. B., Azeem, M., & Binyameen, M. (2016). Effects of different animal manures on attraction and reproductive behaviors of common house fly, Musca domestica L. Parasitology Research, 115(9), 3585-3598.
Shantibala, T., Lokeshwari, R. K., & Debaraj, H. (2014). Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India. Journal of Insect Science, 14(1)
Srinroch, C., Srisomsap, C., Chokchaichamnankit, D., Punyarit, P., & Phiriyangkul, P. (2015). Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chemistry, 184, 160-166.
Surendra, K. C., Olivier, R., Tomberlin, J. K., Jha, R., & Khanal, S. K. (2016). Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renewable Energy, 98, 197-202.
Tang, C., Yang, D., Liao, H., Sun, H., Liu, C., Wei, L., & Li, F. (2019). Edible insects as a food source: a review. Food Production, Processing and Nutrition, 1(1), 1-13.
Testa, M., Stillo, M., Maffei, G., Andriolo, V., Gardois, P., & Zotti, C. M. (2017). Ugly but tasty: A systematic review of possible human and animal health risks related to entomophagy. Critical Reviews in Food Science and Nutrition, 57(17), 3747-3759.
Van Broekhoven, S., Bastiaan-Net, S., de Jong, N. W., & Wichers, H. J. (2016). Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chemistry, 196, 1075-1083.
Van Huis, A., & Oonincx, D. G. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37(5), 1-14.
Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.accessrights.*.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.local.spa.fl_str_mv Acceso abierto
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
Attribution-NonCommercial-NoDerivatives 4.0 International
Acceso abierto
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv applicaction/pdf
dc.coverage.sede.spa.fl_str_mv Calle 100
dc.publisher.program.spa.fl_str_mv Especialización en Planeación Ambiental y Manejo Integral de los Recursos Naturales
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv http://repository.unimilitar.edu.co/bitstream/10654/38939/1/RavagliCastilloAndreaCarolina2021.pdf
http://repository.unimilitar.edu.co/bitstream/10654/38939/2/license.txt
http://repository.unimilitar.edu.co/bitstream/10654/38939/3/RavagliCastilloAndreaCarolina2021.pdf.jpg
bitstream.checksum.fl_str_mv 356f46d42812383222c4d9447ea9ebc8
a609d7e369577f685ce98c66b903b91b
d7a08d441f375b262fb82eef001231d8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1808417817862602752
spelling Pedraza Nájar, Ximena LucíaRavagli Castillo, Andrea CarolinaEspecialista en Planeación Ambiental y Manejo Integral de los Recursos Naturales2021-10-01T19:45:38Z2021-10-01T19:45:38Z2021-05-20http://hdl.handle.net/10654/38939instname:Universidad Militar Nueva Granadareponame:Repositorio Institucional Universidad Militar Nueva Granadarepourl:https://repository.unimilitar.edu.coEl crecimiento poblacional acelerado tiene efectos sobre el uso del suelo, ya que una mayor densidad poblacional genera una mayor demanda de productos alimenticios lo cual induce a que la actividad económica agropecuaria, que en Colombia es una de las principales, ocupe más territorios. La expansión del uso del suelo para fines de ganadería es cada vez más predominante debido al alto consumo de proteína animal por parte de la población. El impacto ambiental que implica la ganadería comprende la compactación del suelo, destrucción de bosques nativos por deforestación, pérdida de la biodiversidad de fauna y flora, alteración de hábitats naturales, y mayor emisión de gases de efecto invernadero, entre otros. Por lo anterior, se hace imperante hallar alternativas de fuente de proteína animal que aminoren los impactos ambientales producto de la ganadería y para contribuir a la seguridad alimentaria ya que la producción de alimentos a futuro presenta importantes retos para atenuar el hambre crónica. De esta forma se presenta a los insectos comestibles como alternativa de fuente de proteína animal realizando una revisión bibliográfica que permita dilucidar los tipos de insectos que son aptos para consumo, las prácticas que se deben implementar para su recolección y cría, la sostenibilidad en la cría de insectos frente a la producción ganadera convencional, eficiencia de conversión, valor nutricional, seguridad alimentaria, riesgos y legislación. El presente artículo destaca la implementación de cultivos de producción de insectos comestibles como una alternativa prometedora por sus beneficios ambientales y aportes nutricionales.Accelerated population growth has effects on land use, since a higher population density generates a greater demand for food products, which induces agricultural economic activity, that in Colombia is one of the most important, to occupy more territories. The expansion of land use for livestock purposes is increasingly predominant due to the high consumption of animal protein by the population. The environmental impact that livestock farming implies, includes soil compaction, destruction of native forests due to deforestation, loss of fauna and flora biodiversity, alteration of natural habitats, and higher greenhouse gas emissions, among others. Therefore, it is imperative to find alternative sources of animal protein that reduce the environmental impacts caused by livestock and to contribute to food security since future food production presents important challenges to alleviate chronic hunger. In this way, edible insects are presented as an alternative source of animal protein, carrying out a bibliographic review that allows to elucidate the types of insects that are suitable for consumption, the practices that must be implemented for their collection and breeding, sustainability in breeding of insects versus conventional livestock production, conversion efficiency, nutritional value, food safety, risks and legislation. This article highlights the implementation of crops for the production of edible insects as a promising alternative due to its environmental benefits and nutritional contributions.Especializaciónapplicaction/pdfspahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Attribution-NonCommercial-NoDerivatives 4.0 InternationalAcceso abiertoProspección de los Insectos Comestibles como fuente de proteína animal para el consumo humanoProspect for Edible Insects as a source of animal protein for human consumptionINSECTOS COMO ALIMENTOPROTEINASIMPACTO AMBIENTALSEGURIDAD ALIMENTICIAEdible insectsAnimal proteinNutritional valueEntomophagyEnvironmental impactFood safetyInsectos comestiblesProteína animalValor nutricionalEntomofagiaImpacto ambientalSeguridad alimentariaTesis/Trabajo de grado - Monografía - Especializacióninfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fEspecialización en Planeación Ambiental y Manejo Integral de los Recursos NaturalesFacultad de IngenieríaUniversidad Militar Nueva GranadaBelluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: a critical review. Comprehensive Reviews in Food Science and Food Safety, 12(3), 296-313.Berg, J., Wendin, K., Langton, M., Josell, Å, & Davidsson, F. (2017). State Of The Art report-: insects as food and feed. Annals of Experimental Biology, 5(2), 1-9.Bessa, L. W., Pieterse, E., Sigge, G., & Hoffman, L. C. (2020). Insects as human food; from farm to fork. Journal of the Science of Food and Agriculture, 100(14), 5017-5022.Cerritos, R. (2009). Insects as food: an ecological, social and economical approach. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4(27), 1-10.Collavo, A., Glew, R. H., Huang, Y., Chuang, L., Bosse, R., & Paoletti, M. G. (2005). House cricket small-scale farming. Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails, 27, 515-540.DANE. Departamento Administrativo Nacional de Estadística. (2016). Tercer Censo Nacional Agropecuario. La mayor operación estadística del campo colombiano en los últimos 45 años. Tomo 2, Resultados. https://www.dane.gov.co/files/images/foros/foro-de-entrega-de-resultados-y-cierre-3-censo-nacional-agropecuario/CNATomo2-Resultados.pdfde Castro, Ruann Janser Soares, Ohara, A., dos Santos Aguilar, Jessika Gonçalves, & Domingues, M. A. F. (2018). Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends in Food Science & Technology, 76, 82-89.Deroy, O., Reade, B., & Spence, C. (2015). The insectivore’s dilemma, and how to take the West out of it. Food Quality and Preference, 44, 44-55.Dobermann, D., Swift, J. A., & Field, L. M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293-308.Edijala, J. K., Egbogbo, O., & Anigboro, A. A. (2009). Proximate composition and cholesterol concentrations of Rhynchophorus phoenicis and Oryctes monoceros larvae subjected to different heat treatments. African Journal of Biotechnology, 8(10)Ekop, E. A., Udoh, A. I., & Akpan, P. E. (2010). Proximate and anti-nutrient composition of four edible insects in Akwa Ibom State, Nigeria. World J.Appl.Sci.Technol, 2(2), 224-231.Erickson, M. C., Islam, M., Sheppard, C., Liao, J., & Doyle, M. P. (2004). Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. Journal of Food Protection, 67(4), 685-690.FAO. Food and Agriculture Organization of the United Nations. (2012). Technical Consultation Meeting 23-25 January 2012, FAO, Rome, Italy. Assessing the Potential of Insects as Food and Feed in assuring Food Security. Summary Report. Recuperado el 11 de mayo 2021, de http://www.fao.org/3/an233e/an233e00.pdfFAO. Food and Agriculture Organization of the United Nations. (2013). Food wastage footprint: impact on natural resources. Summary Report. Recuperado el 4 de mayo 2021, de http://www.fao.org/3/i3347e/i3347e.pdfFernandez‐Cassi, X., Supeanu, A., Jansson, A., Boqvist, S., & Vagsholm, I. (2018). Novel foods: a risk profile for the house cricket (Acheta domesticus). EFSA Journal, 16, e16082Fombong, F. T., Van Der Borght, M., & Vanden Broeck, J. (2017). Influence of freeze-drying and oven-drying post blanching on the nutrient composition of the edible insect Ruspolia differens. Insects, 8(3), 102.Gahukar, R. T. (2016). Edible insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. Insects as sustainable food ingredients (pp. 85-111). Elsevier.Gere, A., Zemel, R., Radványi, D., & Moskowitz, H. (2017). Insect based foods a nutritional point of view. Nutrition and Food Science International Journal, 4(3)Grabowski, N. T., & Klein, G. (2017). Microbiology of cooked and dried edible Mediterranean field crickets (Gryllus bimaculatus) and superworms (Zophobas atratus) submitted to four different heating treatments. Food Science and Technology International, 23(1), 17-23.Gravel, A., & Doyen, A. (2020). The use of edible insect proteins in food: Challenges and issues related to their functional properties. Innovative Food Science & Emerging Technologies, 59, 102272.Halloran, A., Hanboonsong, Y., Roos, N., & Bruun, S. (2017). Life cycle assessment of cricket farming in north-eastern Thailand. Journal of Cleaner Production, 156, 83-94.Halloran, A., Roos, N., Eilenberg, J., Cerutti, A., & Bruun, S. (2016). Life cycle assessment of edible insects for food protein: a review. Agronomy for Sustainable Development, 36(4), 1-13.Hartmann, C., Shi, J., Giusto, A., & Siegrist, M. (2015). The psychology of eating insects: A cross-cultural comparison between Germany and China. Food Quality and Preference, 44, 148-156.Herrero, M., Wirsenius, S., Henderson, B., Rigolot, C., Thornton, P., Havlík, P., De Boer, I., & Gerber, P. J. (2015). Livestock and the environment: what have we learned in the past decade? Annual Review of Environment and Resources, 40, 177-202.Hoekstra, A. Y. (2012). The hidden water resource use behind meat and dairy. Animal Frontiers, 2(2), 3-8.House, J. (2016). Consumer acceptance of insect-based foods in the Netherlands: Academic and commercial implications. Appetite, 107, 47-58.Jongema, Y. (2017). List of edible insects of the World. Wageningen University & Research. Recuperado el 8 de mayo de 2021, de https://www.wur.nl/upload_mm/8/a/6/0fdfc700-3929-4a74-8b69-f02fd35a1696_Worldwide%20list%20of%20edible%20insects%202017.pdfKim, T., Yong, H. I., Kim, Y., Kim, H., & Choi, Y. (2019). Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food Science of Animal Resources, 39(4), 521.Kinyuru, J. N., Kenji, G. M., Njoroge, S. M., & Ayieko, M. (2010). Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food and Bioprocess Technology, 3(5), 778-782.Kouřimská, L., & Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22-26.Lewis, A. (2015). Review of US state-level entomophagy regulation 2015. Recuperado el 7 de mayo de 2021, de http://pitt.afdo.org/uploads/1/5/9/4/15948626/ffp_lewis_adam_entomophagy_regulation_ppt_final_afdo_v2.pdfLiu, Q., Tomberlin, J. K., Brady, J. A., Sanford, M. R., & Yu, Z. (2008). Black soldier fly (Diptera: Stratiomyidae) larvae reduce Escherichia coli in dairy manure. Environmental Entomology, 37(6), 1525-1530.Lundy, M. E., & Parrella, M. P. (2015). Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PloS One, 10(4), e0118785.Madibela, O. R., Seitiso, T. K., Thema, T. F., & Letso, M. (2007). Effect of traditional processing methods on chemical composition and in vitro true dry matter digestibility of the Mophane worm (Imbrasia belina). Journal of Arid Environments, 68(3), 492-500.MADR-UPRA. Ministerio de Agricultura y Desarrollo Rural – Unidad de Planificación Rural Agropecuaria. (2018). Identificación General de la Frontera Agrícola en Colombia, Escala 1:100.000 https://www.minagricultura.gov.co/Normatividad/Projects_Documents/IDENTIFICACION%20GENERAL%20DE%20LA%20FRONTERA%20.pdfManurung, R., Supriatna, A., Esyanthi, R. R., & Putra, R. E. (2016). Bioconversion of rice straw waste by black soldier fly larvae (Hermetia illucens L.): optimal feed rate for biomass production. J Entomol Zool Stud, 4(4), 1036-1041.Marshall, D. L., Dickson, J. S., & Nguyen, N. H. (2016). Ensuring food safety in insect based foods: Mitigating microbiological and other foodborne hazards. Insects as sustainable food ingredients (pp. 223-253). Elsevier.Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577-1600.Melis, R., Braca, A., Mulas, G., Sanna, R., Spada, S., Serra, G., Fadda, M. L., Roggio, T., Uzzau, S., & Anedda, R. (2018). Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innovative Food Science & Emerging Technologies, 48, 138-149.Ministerio de consumo. (2020). Situación de los insectos en la alimentación humana. Agencia española de seguridad alimentaria y nutrición. Recuperado el 7 de mayo de 2021, de https://www.aesan.gob.es/AECOSAN/docs/documentos/seguridad_alimentaria/gestion_riesgos/INSECTOS_ALIMENTACION_.pdfMurefu, T. R., Macheka, L., Musundire, R., & Manditsera, F. A. (2019). Safety of wild harvested and reared edible insects: A review. Food Control, 101, 209-224.Mwangi, M. N., Oonincx, D. G., Stouten, T., Veenenbos, M., Melse-Boonstra, A., Dicke, M., & Van Loon, J. J. (2018). Insects as sources of iron and zinc in human nutrition. Nutrition Research Reviews, 31(2), 248-255.Nowak, V., Persijn, D., Rittenschober, D., & Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193, 39-46.Oonincx, D. G., & De Boer, I. J. (2012). Environmental impact of the production of mealworms as a protein source for humans–a life cycle assessment. PloS One, 7(12), e51145.Oonincx, D., Van Huis, A., & Van Loon, J. (2015). Nutrient utilisation by black soldier flies fed with chicken, pig, or cow manure. Journal of Insects as Food and Feed, 1(2), 131-139.Palmer, L. (2016). Edible insects as a source of food allergens [Trabajo de Fin de Grado, Universidad de Nebraska]. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1076&context=foodscidissPatel, S., Suleria, H. A. R., & Rauf, A. (2019). Edible insects as innovative foods: Nutritional and functional assessments. Trends in Food Science & Technology, 86, 352-359.Premalatha, M., Abbasi, T., Abbasi, T., & Abbasi, S. A. (2011). Energy-efficient food production to reduce global warming and ecodegradation: The use of edible insects. Renewable and Sustainable Energy Reviews, 15(9), 4357-4360.Restrepo Franco, L. J. (2020). Identificación de la dinámica de disminución del ecosistema boscoso a causa de la expansión de actividades antrópicas, durante los años 2015-2020, en la cuenca del río Santa Rita, municipio de Andes, Antioquia. Tecnológico de Antioquia – Institución Universitaria.Rumpold, B. A., & Schlüter, O. K. (2013a). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802-823.Rumpold, B. A., & Schlüter, O. K. (2013b). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11.Shah, R. M., Azhar, F., Shad, S. A., Walker, W. B., Azeem, M., & Binyameen, M. (2016). Effects of different animal manures on attraction and reproductive behaviors of common house fly, Musca domestica L. Parasitology Research, 115(9), 3585-3598.Shantibala, T., Lokeshwari, R. K., & Debaraj, H. (2014). Nutritional and antinutritional composition of the five species of aquatic edible insects consumed in Manipur, India. Journal of Insect Science, 14(1)Srinroch, C., Srisomsap, C., Chokchaichamnankit, D., Punyarit, P., & Phiriyangkul, P. (2015). Identification of novel allergen in edible insect, Gryllus bimaculatus and its cross-reactivity with Macrobrachium spp. allergens. Food Chemistry, 184, 160-166.Surendra, K. C., Olivier, R., Tomberlin, J. K., Jha, R., & Khanal, S. K. (2016). Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renewable Energy, 98, 197-202.Tang, C., Yang, D., Liao, H., Sun, H., Liu, C., Wei, L., & Li, F. (2019). Edible insects as a food source: a review. Food Production, Processing and Nutrition, 1(1), 1-13.Testa, M., Stillo, M., Maffei, G., Andriolo, V., Gardois, P., & Zotti, C. M. (2017). Ugly but tasty: A systematic review of possible human and animal health risks related to entomophagy. Critical Reviews in Food Science and Nutrition, 57(17), 3747-3759.Van Broekhoven, S., Bastiaan-Net, S., de Jong, N. W., & Wichers, H. J. (2016). Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chemistry, 196, 1075-1083.Van Huis, A., & Oonincx, D. G. (2017). The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37(5), 1-14.Van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: future prospects for food and feed security. Food and Agriculture Organization of the United Nations.Calle 100ORIGINALRavagliCastilloAndreaCarolina2021.pdfRavagliCastilloAndreaCarolina2021.pdfTrabajo de gradoapplication/pdf303048http://repository.unimilitar.edu.co/bitstream/10654/38939/1/RavagliCastilloAndreaCarolina2021.pdf356f46d42812383222c4d9447ea9ebc8MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83420http://repository.unimilitar.edu.co/bitstream/10654/38939/2/license.txta609d7e369577f685ce98c66b903b91bMD52THUMBNAILRavagliCastilloAndreaCarolina2021.pdf.jpgRavagliCastilloAndreaCarolina2021.pdf.jpgIM Thumbnailimage/jpeg6411http://repository.unimilitar.edu.co/bitstream/10654/38939/3/RavagliCastilloAndreaCarolina2021.pdf.jpgd7a08d441f375b262fb82eef001231d8MD5310654/38939oai:repository.unimilitar.edu.co:10654/389392021-10-02 01:03:30.692Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hLCB0cmFiYWpvIGRlIGdyYWRvIG8gY3VhbHF1aWVyIG90cm8gZG9jdW1lbnRvCmNvbiBjYXLDoWN0ZXIgYWNhZMOpbWljbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sIGhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2bwp5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKRUwgRVNUVURJQU5URSAtIEFVVE9SLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuCmVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvcgpsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KCkVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4KY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBFU1RVRElBTlRFIC0gQVVUT1IsCmFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7CnBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCkFkZW3DoXMsICJMQSBVTklWRVJTSURBRCBNSUxJVEFSIE5VRVZBIEdSQU5BREEgY29tbyBpbnN0aXR1Y2nDs24gcXVlIGFsbWFjZW5hLCB5CnJlY29sZWN0YSBkYXRvcyBwZXJzb25hbGVzLCBhdGVuZGllbmRvIGxvIHByZWNlcHR1YWRvIGVuIGxhIGxleSAxNTgxIGRlIDIwMTIgeSBlbApEZWNyZXRvIDEzNzcgZGUgMjAxMywgcXVlIGRlc2Fycm9sbGFuIGVsIHByaW5jaXBpbyBjb25zdGl0dWNpb25hbCBxdWUgdGllbmVuIHRvZGFzCmxhcyBwZXJzb25hcyBhIGNvbm9jZXIsIGFjdHVhbGl6YXIgeSByZWN0aWZpY2FyIHRvZG8gdGlwbyBkZSBpbmZvcm1hY2nDs24gcmVjb2dpZGEKbywgcXVlIGhheWEgc2lkbyBvYmpldG8gZGUgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBlbiBiYW5jb3MgbyBiYXNlcyBkZQpkYXRvcyB5IGVuIGdlbmVyYWwgZW4gYXJjaGl2b3MgZGUgZW50aWRhZGVzIHDDumJsaWNhcyBvIHByaXZhZGFzLCByZXF1aWVyZSBvYnRlbmVyCnN1IGF1dG9yaXphY2nDs24sIHBhcmEgcXVlLCBkZSBtYW5lcmEgbGlicmUsIHByZXZpYSwgZXhwcmVzYSwgdm9sdW50YXJpYSwgeQpkZWJpZGFtZW50ZSBpbmZvcm1hZGEsIHBlcm1pdGEgYSB0b2RhcyBudWVzdHJhcyBkZXBlbmRlbmNpYXMgYWNhZMOpbWljYXMgeQphZG1pbmlzdHJhdGl2YXMsIHJlY29sZWN0YXIsIHJlY2F1ZGFyLCBhbG1hY2VuYXIsIHVzYXIsIGNpcmN1bGFyLCBzdXByaW1pciwgcHJvY2VzYXIsCmNvbXBpbGFyLCBpbnRlcmNhbWJpYXIsIGRhciB0cmF0YW1pZW50bywgYWN0dWFsaXphciB5IGRpc3BvbmVyIGRlIGxvcyBkYXRvcyBxdWUKaGFuIHNpZG8gc3VtaW5pc3RyYWRvcyB5IHF1ZSBzZSBoYW4gaW5jb3Jwb3JhZG8gZW4gbnVlc3RyYXMgYmFzZXMgbyBiYW5jb3MgZGUKZGF0b3MsIG8gZW4gcmVwb3NpdG9yaW9zIGVsZWN0csOzbmljb3MgZGUgdG9kbyB0aXBvIGNvbiBxdWUgY3VlbnRhIGxhIFVuaXZlcnNpZGFkLgoKRXN0YSBpbmZvcm1hY2nDs24gZXMgeSBzZXLDoSB1dGlsaXphZGEgZW4gZWwgZGVzYXJyb2xsbyBkZSBsYXMgZnVuY2lvbmVzIHByb3BpYXMgZGUKbGEgVW5pdmVyc2lkYWQgZW4gc3UgY29uZGljacOzbiBkZSBpbnN0aXR1Y2nDs24gZGUgZWR1Y2FjacOzbiBzdXBlcmlvciwgZGUgZm9ybWEKZGlyZWN0YSBvIGEgdHJhdsOpcyBkZSB0ZXJjZXJvcyIuCgpTaSBzdSBkb2N1bWVudG8gZXMgZGUgYWNjZXNvIHJlc3RyaW5naWRvICwgc3UgdHJhYmFqbyBzZSBkZXBvc2l0YXLDoSBlbiBlbApSZXBvc2l0b3JpbyBVTU5HIMO6bmljYW1lbnRlIGNvbiBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRvY3VtZW50YWwgeSBtZW1vcmlhCmluc3RpdHVjaW9uYWwsIGVudGVuZGllbmRvIHF1ZSwgc2Vyw6EgY29uc3VsdGFkbyBkZSBmb3JtYSBjb250cm9sYWRhIHNvbGFtZW50ZSBwb3IKbGEgY29tdW5pZGFkIE5lb2dyYW5hZGluYS4KClNpIHN1IGRvY3VtZW50byBlcyBkZSBhY2Nlc28gYWJpZXJ0bywgcGFyYSBwZXJtaXRpciBhbCBSZXBvc2l0b3JpbyBVTU5HIHJlcHJvZHVjaXIsCnRyYWR1Y2lyIHkgZGlzdHJpYnVpciBzdSBlbnbDrW8gYSB0cmF2w6lzIGRlbCBtdW5kbywgbmVjZXNpdGFtb3Mgc3UgY29uZm9ybWlkYWQgZW4KbG9zIHNpZ3VpZW50ZXMgdMOpcm1pbm9zOgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcwplc3RhYmxlY2lkb3MgZW46CgpMZXkgMjMgZGUgMTk4Mi0gTGV5IDQ0IGRlIDE5OTMgLUxleSAxOTE1IGRlIDIwMTggLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLQpEZWNyZXRvIDQ2MCBkZSAxOTk1IHkgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSwgdXRpbGljZSB5IHVzZSBwb3IKY3VhbHF1aWVyIG1lZGlvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sCmNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlCmRvY3VtZW50by4KCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlCnVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLAplbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLCBpbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLAp5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KClNpIHRpZW5lIGFsZ3VuYSBkdWRhIHNvYnJlIGxvcyBUw6lybWlub3MgeSBjb25kaWNpb25lcywgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwKYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYSBiaWJsaW9kaWdpdGFsQHVuaW1pbGl0YXIuZWR1LmNvCgpBY2VwdGUgVMOpcm1pbm9zIHkgY29uZGljaW9uZXMgc2VsZWNjaW9uYW5kbyAiQWNlcHRvIiB5IHB1bHNhbmRvICJDb21wbGV0YXIgZW52w61vIi4K