Diseño e implementación de una red neuronal para el seguimiento del punto máximo de poder de un panel solar

Este trabajo muestra el diseño e implementación de una red neuronal utilizando método de retropropagación con el fin de realizar el seguimiento de enfoque de luz solar que a su vez permitirá el seguimiento del punto de máxima potencia de un panel solar; esto se logra debido a la capacidad predictiva...

Full description

Autores:
Fernández Posada, Santiago
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad Militar Nueva Granada
Repositorio:
Repositorio UMNG
Idioma:
spa
OAI Identifier:
oai:repository.unimilitar.edu.co:10654/6762
Acceso en línea:
http://hdl.handle.net/10654/6762
Palabra clave:
ENERGIA SOLAR
GENERACION DE ENERGIA FOTOVOLTAICA
Neural network
Gradient descent
Back propagation
learning coefficient
Activation function
Maximum power point
Quality function deployment
radial basis
Redes neuronales
Gradiente descendiente
Retropropagación
Coeficiente de entrenamiento
Función de activación
Punto máximo de poder
Despliegue de la función de calidad
Base radial
Rights
License
http://purl.org/coar/access_right/c_abf2
id UNIMILTAR2_171119219a240314432a943a2f03d786
oai_identifier_str oai:repository.unimilitar.edu.co:10654/6762
network_acronym_str UNIMILTAR2
network_name_str Repositorio UMNG
repository_id_str
dc.title.spa.fl_str_mv Diseño e implementación de una red neuronal para el seguimiento del punto máximo de poder de un panel solar
dc.title.translated.spa.fl_str_mv Design and implementation of a neural network for the maximum power point tracking of a solar panel
title Diseño e implementación de una red neuronal para el seguimiento del punto máximo de poder de un panel solar
spellingShingle Diseño e implementación de una red neuronal para el seguimiento del punto máximo de poder de un panel solar
ENERGIA SOLAR
GENERACION DE ENERGIA FOTOVOLTAICA
Neural network
Gradient descent
Back propagation
learning coefficient
Activation function
Maximum power point
Quality function deployment
radial basis
Redes neuronales
Gradiente descendiente
Retropropagación
Coeficiente de entrenamiento
Función de activación
Punto máximo de poder
Despliegue de la función de calidad
Base radial
title_short Diseño e implementación de una red neuronal para el seguimiento del punto máximo de poder de un panel solar
title_full Diseño e implementación de una red neuronal para el seguimiento del punto máximo de poder de un panel solar
title_fullStr Diseño e implementación de una red neuronal para el seguimiento del punto máximo de poder de un panel solar
title_full_unstemmed Diseño e implementación de una red neuronal para el seguimiento del punto máximo de poder de un panel solar
title_sort Diseño e implementación de una red neuronal para el seguimiento del punto máximo de poder de un panel solar
dc.creator.fl_str_mv Fernández Posada, Santiago
dc.contributor.advisor.spa.fl_str_mv Mauledoux Monroy, Mauricio Felipe
dc.contributor.author.spa.fl_str_mv Fernández Posada, Santiago
dc.subject.lemb.spa.fl_str_mv ENERGIA SOLAR
GENERACION DE ENERGIA FOTOVOLTAICA
topic ENERGIA SOLAR
GENERACION DE ENERGIA FOTOVOLTAICA
Neural network
Gradient descent
Back propagation
learning coefficient
Activation function
Maximum power point
Quality function deployment
radial basis
Redes neuronales
Gradiente descendiente
Retropropagación
Coeficiente de entrenamiento
Función de activación
Punto máximo de poder
Despliegue de la función de calidad
Base radial
dc.subject.keywords.spa.fl_str_mv Neural network
Gradient descent
Back propagation
learning coefficient
Activation function
Maximum power point
Quality function deployment
radial basis
dc.subject.proposal.spa.fl_str_mv Redes neuronales
Gradiente descendiente
Retropropagación
Coeficiente de entrenamiento
Función de activación
Punto máximo de poder
Despliegue de la función de calidad
Base radial
description Este trabajo muestra el diseño e implementación de una red neuronal utilizando método de retropropagación con el fin de realizar el seguimiento de enfoque de luz solar que a su vez permitirá el seguimiento del punto de máxima potencia de un panel solar; esto se logra debido a la capacidad predictiva de la red que mediante el uso de sensores de luz lleva a cabo el movimiento angular del panel para encontrar su posición óptima. Todo esto se implementa utilizando un prototipo que contiene: un panel solar, un motor y seis sensores fotovoltaicos. Los sensores son las entradas de la red, que en función de su entrenamiento debe ser capaz de analizar los datos y luego transformarlos en una salida que permita la rotación del motor a la ubicación deseada.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2015-11-03T13:52:20Z
2019-12-26T22:11:19Z
dc.date.available.none.fl_str_mv 2015-11-03T13:52:20Z
2019-12-26T22:11:19Z
dc.date.issued.none.fl_str_mv 2015-01-10
dc.type.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.local.spa.fl_str_mv Trabajo de grado
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10654/6762
url http://hdl.handle.net/10654/6762
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv H. Ravishankar Kamath, R.S Althal, P.K Singh Ashls Kumar, Sinha y Atlt R Danak, “Modeling of Photovoltaic Array and Maximun Power Point Tracker Using ANN,” de Website: http://journal.esrgroups.org/jes/papers/4_3_4.pdf.
A.A. Argiriou, I. Bellas-Velidis y C.A. Balaras, "Development of a neural network heating controller for solar buildings," de Neural Networks 13 (2000) 811-820.
H. Wang, T. Luo, Y. Fan, Z. Lu ET. Al.,"A self-powered single-axis maximum power direction tracking system with an on-chip sensor," de Solar Energy, vol. 112, Febrero 2015, p.p. 100-107.
Theodore Amissah OCRAN, CAO Junyi CAO Binggang, SUN Xinghua, “Artificial Neural Network Maximum Power Point Tracker for Solar Electric Vehicle”, Apri l 200 5
ECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society,”Artificial neural network based maximum power point tracking technique for PV systems”, 25-28 Oct. 2012
Mohamed Aymen Sahnoun, Hector M. Romero Ugalde, , Jean-Claude Carmona, Julien Gomand, “maximum Power point Tracking Using P&O Control Optimized by a Neural Network Approach: A Good Compromise between Accuracy and Complexity”, 2013.
Kuei-Hsiang Chao, Ching-Ju Li, Meng-Huei Wang,A, “Maximum Power Point Tracking Method Based on Extension Neural Network for PV Systems”,2009.
Yasushi Kohata, Koichiro Yamauchi, and Masahito Kurihara, “High-Speed Maximum Power Point Tracker for Photovoltaic Systems Using Online Learning Neural Networks”, Mayo 25, 2010.
MUMMADI VEERACHARY, TOMONOBU SENJYU, KATSUMI UEZATO “Voltage-Based Maximum Power Point Tracking Control of PV System”
M.T. Makhloufi , M.S. Khireddine, Y. Abdessemed, A. Boutarfa, “Tracking Power Photovoltaic System using Artificial Neural Network Control Strategy”, Marzo 12 de 2014.
A. Mellita, M. Benghanem,S.A. Kalogirou, "Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure," de Renewable Energy, vol. 32, Febrero 2007, p.p. 285-313.
A. Saberian, H. Hizam, M. A. M. Radzi, M. Z. A. Ab Kadir y Maryam Mirzaei, “Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks,” de International Journal of Photoenergy, vol. 2014, Article ID 469701, 10 pages, 2014.
Khomdram Jolson, K L Rita, Sapam Jitu, Yengkhom Chandrika, N.Basanta y S.K., “artificial neural network approach for more accurate solar cell electrical circuit model”, International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.3, Junio 2014.
Moufdi Hadjab, Smail Berrah and Hamza Abid, “Neural network for modeling solar panel”, 2012.
Fei Wang, Zengqiang Mi, Shi Su y Hongshan Zhao, “Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters”, 15 Febrero 2012
Crescenzio Gallo, Michelangelo De Bonis, “A Neural Network Model for Forecasting Photovoltaic Deployment in Italy”
Engin Karatepe,, Mutlu Boztepe, Metin Colak, “Neural network based solar cell model”, Julio de 2005.
Shahril Irwan Sulaiman, Nur Zahidah Zainol, Zulkifli Othman, Hedzlin Zainuddin “Modeling of Operating Photovoltaic Module Temperature Using Hybrid Cuckoo and Artificial Neural Network”, 2014.
Gwinyai Dzimano, B.S, “Modeling of photovoltaic systems”, 2008.
T.M.Vishnukumar y G.Uma, "Intelligent Controller for Maximum Power Point Tracking Control of Solar Power Generation System" de International Journal of Engineering Research and Applications (IJERA), 2013.
Anil K. Rai, N.D. Kaushika,Bhupal Singh, Niti Agarwal, "Simulation model of ANN based maximum power point tracking controller for solar PV system," de Solar Energy Materials and Solar Cells, vol. 95, Febrero 2011, p.p. 773-778.
CHEHOURI ADAM, GHANDOUR MAZEN , LIVINTI PETRU, “A Real Time Simulation of a Photovoltaic System with Maximum Power Point Tracking”.
J. Nagarjuna Reddy, B M Manjunatha, Mallikarjuna Matam, “Improving efficiency of Photovoltaic System with Neural Network Based MPPT Connected To DC Shunt Motor”, Oct. 2013.
A. M. Zaki, S. I. Amer y M. Mostafa, "Maximum Power Point Tracking for PV System Using Advanced Neural Networks Technique ," de Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 2, Issue 12, diciembre 2012).
Dzung D. Nguyen, Brad Lehman y Sagar Kamarthi, “Performance Evaluation of Solar Photovoltaic Arrays Including Shadow Effects Using Neural Network,” de Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE , vol., no., pp.3357,3362, 20-24 Sept. 2009.
Dzung D. Nguyen, Brad Lehman, Sagar Kamarthi, “Solar Photovoltaic Array's Shadow Evaluation Using Neural Network with On-Site Measurement”, 2007.
Niladri Dey, Dasaradha Ramaiah, Dr. T. Venugopal, “Performance Analysis of Solar Panels on Cloud Services”, Marzo 30, 2015.
Jianwu Zeng, Student Member, and Wei Qiao, “Short-Term Solar Power Prediction Using an RBF Neural Network”, 2011.
A. Louchene, A. Benmakhlouf y A. Chaghi, “Solar tracking system with fuzzy reasoning applied to crisp sets”, Mayo 2007.
[M.Godoy Simoes, N.N.Franceschetti, “Fuzzy optimization based control of a solar array system”.
B. Chuco Paucar, J.L. Roel Ortiz, K.S. Collazos L., L.C.Leite y J.O.P Pinto, “Power operation optimization of photovoltaic standalone system with variable loads using fuzzy voltage estimator and neural network controller,” IEEE PowerTech, 2007.
C. Salah y M. Ouali, "Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems", de Electric Power Systems Research, vol. 81, Enero 2011, p.p. 43-50.
D. Vasarevicius, R. Martavicius y M. Pikutis, “Application of Artificial Neural Networks for Maximum Power Point Tracking of Photovoltaic Panels,” de ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 10, 2012.
NAOUFEL KHALDI, HASSAN MAHMOUDI, MALIKA ZAZI, YOUSSEF BARRADI, “Modelling and Analysis of Neural Network and Incremental Conductance MPPT Algorithm for PV Array Using Boost Converter”.
Roshan Kini, Geetha.Narayanan, Aditya Dalvi, “COMPARATIVE STUDY AND IMPLEMENTATION OF INCREMENTAL CONDUCTANCE METHOD AND PERTURB AND OBSERVE METHOD WITH BUCK CONVERTER BY USING ARDUINO” Enero-2014, India.
Divya Teja Reddy Challa , I. Raghavendar , “Implementation of Incremental Conductance MPPT with Direct Control Method Using Cuk Converter”, Nov-Dic 2012.
MERWAN SAAD SAOUD, HADJ AHMED ABBASSI, SALEH KERMICHE, MAHDI OUADA , “Improved incremental conductance method for maximum power point tracking using cuk converter”.
Vaddi Ramesh, P Anjappa, P.Dhanamjaya, “Simulation and Implementation of Incremental Conductance MPPT with Direct Control Method Using Boost Converter”, Noviembre 2013.
Aymen Chaouachi, Rashad M. Kamel, y Ken Nagasaka, “Neural Network Ensemble-Based Solar Power Generation Short-Term Forecasting”, Agosto 4, 2009.
S. Premrudeepreechacham y N. Patanapirom, "Solar-Array Modelling and Maximun Power Point Tracking Using Neural Networks", de IEEE Bologna Power Tech Conference, Junio 23-26, 2003, Bologna, Italia.
Stuart Russell, Peter Norvig, “Artificial Intelligence A Modern Approach”, Pearson Education Inc, 2010, pp. 728-762.
R. Rojas, “Neural Networks a Systematic Introduction”, Springer-Verlag, Berlin, 1996.
Cos¸kun Özkan, Filiz Sunar Erbek, “Photogrammetric Engineering & Remote Sensing” Vol. 69, No. 11, November 2003, pp. 1225–1234.
Bekir Karlik and A. Vehbi Olgac, “International Journal of Artificial Intelligence And Expert Systems” (IJAE), Volume (1): Issue (4).
Chuck Anderson , “CS545: Gradient Descent Department of Computer Science” Colorado State University Fall, 2009.
Chenming Hu Richard M. White, “ SOLAR CELLS From Basics to Advanced Systems” McGraw-Hill Series in Electrical Engineering University of California, Berkeley 1983
Bekir Karlik and A. Vehbi Olgac, “Performance Analysis of Various Activation Functions in Generalized MLP Architectures of Neural Networks”
Mario Arrieta Paternina, Luis Carlos Olmos Villalba, Jorge Luis Izquierdo Nuñez, Ramón Antonio Álvarez López, “Design of an solarphotovoltaic system prototype optimizing the slope angle of the solar panels”, 15/05/2012.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Calle 100
dc.publisher.department.spa.fl_str_mv Facultad de Ingenieríad
dc.publisher.program.spa.fl_str_mv Ingeniería en Mecatrónica
dc.publisher.grantor.spa.fl_str_mv Universidad Militar Nueva Granada
institution Universidad Militar Nueva Granada
bitstream.url.fl_str_mv http://repository.unimilitar.edu.co/bitstream/10654/6762/1/Informe_final_Opcion_de_Grado_Fernandez_Posada_1801679.pdf
http://repository.unimilitar.edu.co/bitstream/10654/6762/2/license.txt
http://repository.unimilitar.edu.co/bitstream/10654/6762/3/Informe_final_Opcion_de_Grado_Fernandez_Posada_1801679.pdf.txt
http://repository.unimilitar.edu.co/bitstream/10654/6762/4/Informe_final_Opcion_de_Grado_Fernandez_Posada_1801679.pdf.jpg
bitstream.checksum.fl_str_mv 8dd26e8b176fc9841202b1af3f31a353
57c1b5429c07cf705f9d5e4ce515a2f6
6dfb7ea9ccceb063c889d703558109bc
e55e7494eecbda716ff6b75fdae445de
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UMNG
repository.mail.fl_str_mv bibliodigital@unimilitar.edu.co
_version_ 1808417798958874624
spelling Mauledoux Monroy, Mauricio FelipeFernández Posada, SantiagoIngeniero en MecatrónicaCalle 1002015-11-03T13:52:20Z2019-12-26T22:11:19Z2015-11-03T13:52:20Z2019-12-26T22:11:19Z2015-01-10http://hdl.handle.net/10654/6762Este trabajo muestra el diseño e implementación de una red neuronal utilizando método de retropropagación con el fin de realizar el seguimiento de enfoque de luz solar que a su vez permitirá el seguimiento del punto de máxima potencia de un panel solar; esto se logra debido a la capacidad predictiva de la red que mediante el uso de sensores de luz lleva a cabo el movimiento angular del panel para encontrar su posición óptima. Todo esto se implementa utilizando un prototipo que contiene: un panel solar, un motor y seis sensores fotovoltaicos. Los sensores son las entradas de la red, que en función de su entrenamiento debe ser capaz de analizar los datos y luego transformarlos en una salida que permita la rotación del motor a la ubicación deseada.This paper presents the design and implementation of a neural network using backpropagation method in order to track the maximum power point of a solar panel by focusing it to the sunlight; this is achieved due to the prediction ability of the network which will use light sensors in order to rotate the solar panel to its optimal position. All of this is implemented using a prototype that contains: a solar panel, a motor and six photovoltaic sensors. The sensors are the entries of the network that based on its training should be able to analyze the data and then transform it into an output that allows the actuator to rotate the panel to a specific location.Pregradoapplication/pdfspaDiseño e implementación de una red neuronal para el seguimiento del punto máximo de poder de un panel solarDesign and implementation of a neural network for the maximum power point tracking of a solar panelinfo:eu-repo/semantics/bachelorThesisTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fENERGIA SOLARGENERACION DE ENERGIA FOTOVOLTAICANeural networkGradient descentBack propagationlearning coefficientActivation functionMaximum power pointQuality function deploymentradial basisRedes neuronalesGradiente descendienteRetropropagaciónCoeficiente de entrenamientoFunción de activaciónPunto máximo de poderDespliegue de la función de calidadBase radialFacultad de IngenieríadIngeniería en MecatrónicaUniversidad Militar Nueva GranadaH. Ravishankar Kamath, R.S Althal, P.K Singh Ashls Kumar, Sinha y Atlt R Danak, “Modeling of Photovoltaic Array and Maximun Power Point Tracker Using ANN,” de Website: http://journal.esrgroups.org/jes/papers/4_3_4.pdf.A.A. Argiriou, I. Bellas-Velidis y C.A. Balaras, "Development of a neural network heating controller for solar buildings," de Neural Networks 13 (2000) 811-820.H. Wang, T. Luo, Y. Fan, Z. Lu ET. Al.,"A self-powered single-axis maximum power direction tracking system with an on-chip sensor," de Solar Energy, vol. 112, Febrero 2015, p.p. 100-107.Theodore Amissah OCRAN, CAO Junyi CAO Binggang, SUN Xinghua, “Artificial Neural Network Maximum Power Point Tracker for Solar Electric Vehicle”, Apri l 200 5ECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society,”Artificial neural network based maximum power point tracking technique for PV systems”, 25-28 Oct. 2012Mohamed Aymen Sahnoun, Hector M. Romero Ugalde, , Jean-Claude Carmona, Julien Gomand, “maximum Power point Tracking Using P&O Control Optimized by a Neural Network Approach: A Good Compromise between Accuracy and Complexity”, 2013.Kuei-Hsiang Chao, Ching-Ju Li, Meng-Huei Wang,A, “Maximum Power Point Tracking Method Based on Extension Neural Network for PV Systems”,2009.Yasushi Kohata, Koichiro Yamauchi, and Masahito Kurihara, “High-Speed Maximum Power Point Tracker for Photovoltaic Systems Using Online Learning Neural Networks”, Mayo 25, 2010.MUMMADI VEERACHARY, TOMONOBU SENJYU, KATSUMI UEZATO “Voltage-Based Maximum Power Point Tracking Control of PV System”M.T. Makhloufi , M.S. Khireddine, Y. Abdessemed, A. Boutarfa, “Tracking Power Photovoltaic System using Artificial Neural Network Control Strategy”, Marzo 12 de 2014.A. Mellita, M. Benghanem,S.A. Kalogirou, "Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure," de Renewable Energy, vol. 32, Febrero 2007, p.p. 285-313.A. Saberian, H. Hizam, M. A. M. Radzi, M. Z. A. Ab Kadir y Maryam Mirzaei, “Modelling and Prediction of Photovoltaic Power Output Using Artificial Neural Networks,” de International Journal of Photoenergy, vol. 2014, Article ID 469701, 10 pages, 2014.Khomdram Jolson, K L Rita, Sapam Jitu, Yengkhom Chandrika, N.Basanta y S.K., “artificial neural network approach for more accurate solar cell electrical circuit model”, International Journal on Computational Sciences & Applications (IJCSA) Vol.4, No.3, Junio 2014.Moufdi Hadjab, Smail Berrah and Hamza Abid, “Neural network for modeling solar panel”, 2012.Fei Wang, Zengqiang Mi, Shi Su y Hongshan Zhao, “Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters”, 15 Febrero 2012Crescenzio Gallo, Michelangelo De Bonis, “A Neural Network Model for Forecasting Photovoltaic Deployment in Italy”Engin Karatepe,, Mutlu Boztepe, Metin Colak, “Neural network based solar cell model”, Julio de 2005.Shahril Irwan Sulaiman, Nur Zahidah Zainol, Zulkifli Othman, Hedzlin Zainuddin “Modeling of Operating Photovoltaic Module Temperature Using Hybrid Cuckoo and Artificial Neural Network”, 2014.Gwinyai Dzimano, B.S, “Modeling of photovoltaic systems”, 2008.T.M.Vishnukumar y G.Uma, "Intelligent Controller for Maximum Power Point Tracking Control of Solar Power Generation System" de International Journal of Engineering Research and Applications (IJERA), 2013.Anil K. Rai, N.D. Kaushika,Bhupal Singh, Niti Agarwal, "Simulation model of ANN based maximum power point tracking controller for solar PV system," de Solar Energy Materials and Solar Cells, vol. 95, Febrero 2011, p.p. 773-778.CHEHOURI ADAM, GHANDOUR MAZEN , LIVINTI PETRU, “A Real Time Simulation of a Photovoltaic System with Maximum Power Point Tracking”.J. Nagarjuna Reddy, B M Manjunatha, Mallikarjuna Matam, “Improving efficiency of Photovoltaic System with Neural Network Based MPPT Connected To DC Shunt Motor”, Oct. 2013.A. M. Zaki, S. I. Amer y M. Mostafa, "Maximum Power Point Tracking for PV System Using Advanced Neural Networks Technique ," de Website: www.ijetae.com (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 2, Issue 12, diciembre 2012).Dzung D. Nguyen, Brad Lehman y Sagar Kamarthi, “Performance Evaluation of Solar Photovoltaic Arrays Including Shadow Effects Using Neural Network,” de Energy Conversion Congress and Exposition, 2009. ECCE 2009. IEEE , vol., no., pp.3357,3362, 20-24 Sept. 2009.Dzung D. Nguyen, Brad Lehman, Sagar Kamarthi, “Solar Photovoltaic Array's Shadow Evaluation Using Neural Network with On-Site Measurement”, 2007.Niladri Dey, Dasaradha Ramaiah, Dr. T. Venugopal, “Performance Analysis of Solar Panels on Cloud Services”, Marzo 30, 2015.Jianwu Zeng, Student Member, and Wei Qiao, “Short-Term Solar Power Prediction Using an RBF Neural Network”, 2011.A. Louchene, A. Benmakhlouf y A. Chaghi, “Solar tracking system with fuzzy reasoning applied to crisp sets”, Mayo 2007.[M.Godoy Simoes, N.N.Franceschetti, “Fuzzy optimization based control of a solar array system”.B. Chuco Paucar, J.L. Roel Ortiz, K.S. Collazos L., L.C.Leite y J.O.P Pinto, “Power operation optimization of photovoltaic standalone system with variable loads using fuzzy voltage estimator and neural network controller,” IEEE PowerTech, 2007.C. Salah y M. Ouali, "Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems", de Electric Power Systems Research, vol. 81, Enero 2011, p.p. 43-50.D. Vasarevicius, R. Martavicius y M. Pikutis, “Application of Artificial Neural Networks for Maximum Power Point Tracking of Photovoltaic Panels,” de ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 10, 2012.NAOUFEL KHALDI, HASSAN MAHMOUDI, MALIKA ZAZI, YOUSSEF BARRADI, “Modelling and Analysis of Neural Network and Incremental Conductance MPPT Algorithm for PV Array Using Boost Converter”.Roshan Kini, Geetha.Narayanan, Aditya Dalvi, “COMPARATIVE STUDY AND IMPLEMENTATION OF INCREMENTAL CONDUCTANCE METHOD AND PERTURB AND OBSERVE METHOD WITH BUCK CONVERTER BY USING ARDUINO” Enero-2014, India.Divya Teja Reddy Challa , I. Raghavendar , “Implementation of Incremental Conductance MPPT with Direct Control Method Using Cuk Converter”, Nov-Dic 2012.MERWAN SAAD SAOUD, HADJ AHMED ABBASSI, SALEH KERMICHE, MAHDI OUADA , “Improved incremental conductance method for maximum power point tracking using cuk converter”.Vaddi Ramesh, P Anjappa, P.Dhanamjaya, “Simulation and Implementation of Incremental Conductance MPPT with Direct Control Method Using Boost Converter”, Noviembre 2013.Aymen Chaouachi, Rashad M. Kamel, y Ken Nagasaka, “Neural Network Ensemble-Based Solar Power Generation Short-Term Forecasting”, Agosto 4, 2009.S. Premrudeepreechacham y N. Patanapirom, "Solar-Array Modelling and Maximun Power Point Tracking Using Neural Networks", de IEEE Bologna Power Tech Conference, Junio 23-26, 2003, Bologna, Italia.Stuart Russell, Peter Norvig, “Artificial Intelligence A Modern Approach”, Pearson Education Inc, 2010, pp. 728-762.R. Rojas, “Neural Networks a Systematic Introduction”, Springer-Verlag, Berlin, 1996.Cos¸kun Özkan, Filiz Sunar Erbek, “Photogrammetric Engineering & Remote Sensing” Vol. 69, No. 11, November 2003, pp. 1225–1234.Bekir Karlik and A. Vehbi Olgac, “International Journal of Artificial Intelligence And Expert Systems” (IJAE), Volume (1): Issue (4).Chuck Anderson , “CS545: Gradient Descent Department of Computer Science” Colorado State University Fall, 2009.Chenming Hu Richard M. White, “ SOLAR CELLS From Basics to Advanced Systems” McGraw-Hill Series in Electrical Engineering University of California, Berkeley 1983Bekir Karlik and A. Vehbi Olgac, “Performance Analysis of Various Activation Functions in Generalized MLP Architectures of Neural Networks”Mario Arrieta Paternina, Luis Carlos Olmos Villalba, Jorge Luis Izquierdo Nuñez, Ramón Antonio Álvarez López, “Design of an solarphotovoltaic system prototype optimizing the slope angle of the solar panels”, 15/05/2012.http://purl.org/coar/access_right/c_abf2ORIGINALInforme_final_Opcion_de_Grado_Fernandez_Posada_1801679.pdfapplication/pdf3379303http://repository.unimilitar.edu.co/bitstream/10654/6762/1/Informe_final_Opcion_de_Grado_Fernandez_Posada_1801679.pdf8dd26e8b176fc9841202b1af3f31a353MD51LICENSElicense.txttext/plain1521http://repository.unimilitar.edu.co/bitstream/10654/6762/2/license.txt57c1b5429c07cf705f9d5e4ce515a2f6MD52TEXTInforme_final_Opcion_de_Grado_Fernandez_Posada_1801679.pdf.txtExtracted texttext/plain165557http://repository.unimilitar.edu.co/bitstream/10654/6762/3/Informe_final_Opcion_de_Grado_Fernandez_Posada_1801679.pdf.txt6dfb7ea9ccceb063c889d703558109bcMD53THUMBNAILInforme_final_Opcion_de_Grado_Fernandez_Posada_1801679.pdf.jpgIM Thumbnailimage/jpeg5445http://repository.unimilitar.edu.co/bitstream/10654/6762/4/Informe_final_Opcion_de_Grado_Fernandez_Posada_1801679.pdf.jpge55e7494eecbda716ff6b75fdae445deMD5410654/6762oai:repository.unimilitar.edu.co:10654/67622020-06-30 13:03:40.401Repositorio Institucional UMNGbibliodigital@unimilitar.edu.coRWwgYXV0b3IgZGUgbGEgb2JyYSAodGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbyksIGFjdHVhbmRvIGVuIG5vbWJyZSBwcm9waW8sCkhhY2UgZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZW4gZm9ybWF0byBkaWdpdGFsIG8gZWxlY3Ryw7NuaWNvLgoKWSBhdXRvcml6YSBhIGxhIFVOSVZFUlNJREFEIE1JTElUQVIgTlVFVkEgR1JBTkFEQSwgcGFyYSBxdWUgZW4gbG9zIHTDqXJtaW5vcyBlc3RhYmxlY2lkb3MgZW46CgotIExleSAyMyBkZSAxOTgyCi0gTGV5IDQ0IGRlIDE5OTMKLSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzCi0gRGVjcmV0byA0NjAgZGUgMTk5NQoKeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIHkgdXNlIHBvciBjdWFscXVpZXIgbWVkaW8gY29ub2NpZG8gbyBwb3IgY29ub2NlciwKbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiBkZSBsYSBvYnJhIApvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4KClBBUsOBR1JBRk86IExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc8OzbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZQpsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byB2aXJ0dWFsLCBlbGVjdHLDs25pY28sIGRpZ2l0YWwsIHkgY3V5byB1c28gc2UgZGUgZW4gcmVkLAppbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBldGMuLCB5IGVuIGdlbmVyYWwgZW4gY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4KCkVMIEVTVFVESUFOVEUgLSBBVVRPUiwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIKbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KClBBUsOBR1JBRk86IEVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4gY3VhbnRvIGEgCmxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgRVNUVURJQU5URSAtIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgCnkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSB1bml2ZXJzaWRhZCBhY3TDumEgY29tbyAKdW4gdGVyY2VybyBkZSBidWVuYSBmZS4K