Co-Evolucion competitiva de agentes de aprendizaje por refuerzo en un dominio de competencia de autos

El objetivo de este trabajo es mostrar la efectividad alcanzada por dos agentes de aprendizaje por refuerzo cuando se entrenan al tiempo en un ambiente compartido, tomando como dominio la competencia de autos en una pista parcialmente observable. Se definió un comportamiento satisfactorio y un compo...

Full description

Autores:
Daza, Eduardo
Tipo de recurso:
Fecha de publicación:
2001
Institución:
Universidad del Magdalena
Repositorio:
Repositorio Unimagdalena
Idioma:
spa
OAI Identifier:
oai:repositorio.unimagdalena.edu.co:123456789/2406
Acceso en línea:
http://repositorio.unimagdalena.edu.co/handle/123456789/2406
Palabra clave:
Reinforcement learning
Multi-Agent Systems
IS-00001
Rights
restrictedAccess
License
atribucionnocomercialsinderivar
id UNIMAGDALE_94a358e8cb92df3b7dd043fd5be1386d
oai_identifier_str oai:repositorio.unimagdalena.edu.co:123456789/2406
network_acronym_str UNIMAGDALE
network_name_str Repositorio Unimagdalena
repository_id_str
dc.title.spa.fl_str_mv Co-Evolucion competitiva de agentes de aprendizaje por refuerzo en un dominio de competencia de autos
title Co-Evolucion competitiva de agentes de aprendizaje por refuerzo en un dominio de competencia de autos
spellingShingle Co-Evolucion competitiva de agentes de aprendizaje por refuerzo en un dominio de competencia de autos
Reinforcement learning
Multi-Agent Systems
IS-00001
title_short Co-Evolucion competitiva de agentes de aprendizaje por refuerzo en un dominio de competencia de autos
title_full Co-Evolucion competitiva de agentes de aprendizaje por refuerzo en un dominio de competencia de autos
title_fullStr Co-Evolucion competitiva de agentes de aprendizaje por refuerzo en un dominio de competencia de autos
title_full_unstemmed Co-Evolucion competitiva de agentes de aprendizaje por refuerzo en un dominio de competencia de autos
title_sort Co-Evolucion competitiva de agentes de aprendizaje por refuerzo en un dominio de competencia de autos
dc.creator.fl_str_mv Daza, Eduardo
dc.contributor.advisor.none.fl_str_mv Prieto, Samuel
dc.contributor.author.none.fl_str_mv Daza, Eduardo
dc.subject.spa.fl_str_mv Reinforcement learning
Multi-Agent Systems
topic Reinforcement learning
Multi-Agent Systems
IS-00001
dc.subject.classification.spa.fl_str_mv IS-00001
description El objetivo de este trabajo es mostrar la efectividad alcanzada por dos agentes de aprendizaje por refuerzo cuando se entrenan al tiempo en un ambiente compartido, tomando como dominio la competencia de autos en una pista parcialmente observable. Se definió un comportamiento satisfactorio y un comportamiento óptimo para evaluar el desempeño de los agentes. Usando lenguaje C++, fue desarrollado para plataforma Linux, el software Pcc, el cual simula las competencias en una pista virtual de carreras y entrega de manera gráfica los resultados del aprendizaje. Se usó el algoritmo SARSA(lambda) con selección de acciones E-greedy en ambos agentes y se corrió la aplicación en ocho escenarios de prueba. Los resultados mostraron el alcance de un comportamiento óptimo en todos los escenarios para ambos agentes. El ambiente discreto, estocástico y parcialmente observable empleado y la co-evolución competitiva lograda y la herramienta de software libre producida, hacen de este trabajo una importante contribución al las investigaciones en aprendizaje de máquina.
publishDate 2001
dc.date.issued.none.fl_str_mv 2001
dc.date.submitted.none.fl_str_mv 2001
dc.date.accessioned.none.fl_str_mv 2019-05-14T20:55:05Z
dc.date.available.none.fl_str_mv 2019-05-14T20:55:05Z
dc.type.spa.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.identifier.other.none.fl_str_mv 025652
dc.identifier.uri.none.fl_str_mv http://repositorio.unimagdalena.edu.co/handle/123456789/2406
identifier_str_mv 025652
url http://repositorio.unimagdalena.edu.co/handle/123456789/2406
dc.language.iso.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv atribucionnocomercialsinderivar
dc.rights.none.fl_str_mv Restringido
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.spa.fl_str_mv Restringido
dc.rights.creativecommons.spa.fl_str_mv atribucionnocomercialsinderivar
rights_invalid_str_mv atribucionnocomercialsinderivar
Restringido
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.spa.fl_str_mv text
dc.publisher.spa.fl_str_mv Universidad del Magdalena
dc.publisher.department.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.program.spa.fl_str_mv Ingeniería de Sistemas
institution Universidad del Magdalena
bitstream.url.fl_str_mv https://repositorio.unimagdalena.edu.co/bitstreams/4ec5c7e7-37e4-4eb4-9e33-3750f704c94f/download
https://repositorio.unimagdalena.edu.co/bitstreams/e7ead366-394e-4a66-88e2-e435c2c915b2/download
https://repositorio.unimagdalena.edu.co/bitstreams/f94c4f90-b00a-4e4a-a5f6-7c783a34b309/download
bitstream.checksum.fl_str_mv 0b5e0dedab74927c9f05613f7d8a7b2c
b37f3126bcd22eeae85cbc2659ee387b
2244a3dd1f6c27208a66f086dab0376d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UniMagdalena
repository.mail.fl_str_mv repositorio@unimagdalena.edu.co
_version_ 1814126852659216384
spelling Prieto, SamuelDaza, EduardoIngeniero (a) de Sistemas2019-05-14T20:55:05Z2019-05-14T20:55:05Z20012001El objetivo de este trabajo es mostrar la efectividad alcanzada por dos agentes de aprendizaje por refuerzo cuando se entrenan al tiempo en un ambiente compartido, tomando como dominio la competencia de autos en una pista parcialmente observable. Se definió un comportamiento satisfactorio y un comportamiento óptimo para evaluar el desempeño de los agentes. Usando lenguaje C++, fue desarrollado para plataforma Linux, el software Pcc, el cual simula las competencias en una pista virtual de carreras y entrega de manera gráfica los resultados del aprendizaje. Se usó el algoritmo SARSA(lambda) con selección de acciones E-greedy en ambos agentes y se corrió la aplicación en ocho escenarios de prueba. Los resultados mostraron el alcance de un comportamiento óptimo en todos los escenarios para ambos agentes. El ambiente discreto, estocástico y parcialmente observable empleado y la co-evolución competitiva lograda y la herramienta de software libre producida, hacen de este trabajo una importante contribución al las investigaciones en aprendizaje de máquina.Submitted by Juan David Martinez Hoyos (juanmartinezdh@unimagdalena.edu.co) on 2019-04-30T23:12:39Z No. of bitstreams: 1 IS-00001.pdf: 21690105 bytes, checksum: 0b5e0dedab74927c9f05613f7d8a7b2c (MD5)Approved for entry into archive by mirlis bravo (mbravo@unimagdalena.edu.co) on 2019-05-14T20:55:04Z (GMT) No. of bitstreams: 1 IS-00001.pdf: 21690105 bytes, checksum: 0b5e0dedab74927c9f05613f7d8a7b2c (MD5)Made available in DSpace on 2019-05-14T20:55:05Z (GMT). No. of bitstreams: 1 IS-00001.pdf: 21690105 bytes, checksum: 0b5e0dedab74927c9f05613f7d8a7b2c (MD5) Previous issue date: 2001text025652http://repositorio.unimagdalena.edu.co/handle/123456789/2406Universidad del MagdalenaFacultad de IngenieríaIngeniería de SistemasatribucionnocomercialsinderivarRestringidoinfo:eu-repo/semantics/restrictedAccessRestringidoatribucionnocomercialsinderivarhttp://purl.org/coar/access_right/c_16ecReinforcement learningMulti-Agent SystemsIS-00001Co-Evolucion competitiva de agentes de aprendizaje por refuerzo en un dominio de competencia de autosbachelorThesishttp://purl.org/coar/resource_type/c_7a1fspaORIGINALIS-00001.pdfIS-00001.pdfapplication/pdf21690105https://repositorio.unimagdalena.edu.co/bitstreams/4ec5c7e7-37e4-4eb4-9e33-3750f704c94f/download0b5e0dedab74927c9f05613f7d8a7b2cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82289https://repositorio.unimagdalena.edu.co/bitstreams/e7ead366-394e-4a66-88e2-e435c2c915b2/downloadb37f3126bcd22eeae85cbc2659ee387bMD52TEXTIS-00001.pdf.txtIS-00001.pdf.txtExtracted texttext/plain79005https://repositorio.unimagdalena.edu.co/bitstreams/f94c4f90-b00a-4e4a-a5f6-7c783a34b309/download2244a3dd1f6c27208a66f086dab0376dMD53123456789/2406oai:repositorio.unimagdalena.edu.co:123456789/24062024-10-02 20:29:58.417https://repositorio.unimagdalena.edu.coRepositorio Institucional UniMagdalenarepositorio@unimagdalena.edu.coTElDRU5DSUEgREUgRElWVUxHQUNJw5NOIE5PIEVYQ0xVU0lWQQoKRUwgQVVUT1IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuIFBBUsOBR1JBRk86IEVuIGNhc28gZGUgcHJlc2VudGFyc2UgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBvIGFjY2nDs24gcG9yIHBhcnRlIGRlIHVuIHRlcmNlcm8gZW4gY3VhbnRvIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgZW4gY3Vlc3Rpw7NuLCBFTCBBVVRPUiwgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSB1bml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLgpFTCBBVVRPUiwgYXV0b3JpemEgYSBMQSBVTklWRVJTSURBRCBERUwgTUFHREFMRU5BLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIHkgdXNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uIEVuIGZ1bmNpw7NuIGRlIGxvIGN1YWwsIGFsIGZpcm1hciB5IGVudmlhciBlc3RhIGxpY2VuY2lhLApFTCBBVVRPUiBvdG9yZ2EgYSBMQSBVTklWRVJTSURBRCBERUwgTUFHREFMRU5BIGVsIGRlcmVjaG8gTk8gRVhDTFVTSVZPIGRlIGFsbWFjZW5hciwgcmVwcm9kdWNjacOzbiwgdHJhZHVjaXIgeSBkaXZ1bGdhciBzdSB0cmFiYWpvIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdXllbmRvLCBwZXJvIG5vIGxpbWl0YWRvIGEgYXVkaW8gbyB2aWRlby4gWSBhY2VwdGEgcXVlIExBIFVOSVZFUlNJREFEIERFTCBNQUdEQUxFTkEgcHVlZGUsIFNJTiBNT0RJRklDQVIgRUwgQ09OVEVOSURPIHkgUkVTUEVUQU5ETyBMT1MgREVSRUNIT1MgTU9SQUxFUywgcHJlc2VudGFyIGxhIG9icmEgZW4gY29tcGlsYWNpb25lcywgw61uZGV4LCBjb25mZXJlbmNpYXMgeSBvdHJhcyBwdWJsaWNhY2lvbmVzIHF1ZSBzZSBwdWVkYW4gZGlzZcOxYXIgcGFyYSBkaXZ1bGdhciBsYSBwcm9kdWNjacOzbiBhY2Fkw6ltaWNhIHkgY2llbnTDrWZpY2EgZGUgbGEgdW5pdmVyc2lkYWQsIFNJTiBRVUUgRVNUTyBDT05MTEVWRSBBIFFVRSBMQSBVTklWRVJTSURBRCBFU1RFIE9CTElHQURBIEEgQlJJTkRBUiBDT01QRU5TQUNJw5NOIE1PTkVUQVJJQSBBTCBBVVRPUiBwb3IgYWN0aXZpZGFkZXMgZGUgZGl2dWxnYWNpw7NuIHkgbG9zIHBvc2libGVzIGJlbsOpZmljb3MgZWNvbsOzbWljb3MgcXVlIGVzdGEgZGl2dWxnYWNpw7NuIHB1ZWRhIGdlbmVyYXIgcGFyYSBsYSB1bml2ZXJzaWRhZC4gCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tIApQT0zDjVRJQ0EgREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4gRGVjbGFybyBxdWUgYXV0b3Jpem8gcHJldmlhIHkgZGUgZm9ybWEgaW5mb3JtYWRhIGVsIHRyYXRhbWllbnRvIGRlIG1pcyBkYXRvcyBwZXJzb25hbGVzIHBvciBwYXJ0ZSBkZSBMQSBVTklWRVJTSURBRCBERUwgTUFHREFMRU5BIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBEZSBpZ3VhbCBmb3JtYSBlbiBmdW5jacOzbiBkZWwgY29ycmVjdG8gZWplcmNpY2lvIGRlIG1pIGRlcmVjaG8gZGUgaGFiZWFzIGRhdGEgcHVlZG8gZW4gY3VhbHF1aWVyIG1vbWVudG8sIHByZXZpYSBpZGVudGlmaWNhY2nDs24sIHNvbGljaXRhciBsYSBjb25zdWx0YSwgY29ycmVjY2nDs24geSBzdXByZXNpw7NuIGRlIG1pcyBkYXRvcy4K