Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale
The study of xylose reductase (XR) - one of the key enzymes in the production of xylitol - is important in the fermentation process to have maximum efficiency in the bioconversion of xylose to xylitol in lignocellulosic hydrolysate. The aim was to evaluate the effect of agitation rate and dissolved...
- Autores:
-
Manjarres Pinzón, K
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad del Atlántico
- Repositorio:
- Repositorio Uniatlantico
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniatlantico.edu.co:20.500.12834/960
- Acceso en línea:
- https://hdl.handle.net/20.500.12834/960
https://www.scopus.com/record/display.uri?eid=2-s2.0-85126587101&doi=10.1590%2ffst.04221&origin=inward&txGid=003e561f119774e92aa7a4183b3e01f0
- Palabra clave:
- Candida tropicalis
xylitol
xylose reductase
dissolved oxygen
non-detoxified hydrolysate
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UNIATLANT2_dc0ccebb4cc693a19868788b2ed6fed3 |
---|---|
oai_identifier_str |
oai:repositorio.uniatlantico.edu.co:20.500.12834/960 |
network_acronym_str |
UNIATLANT2 |
network_name_str |
Repositorio Uniatlantico |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale |
title |
Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale |
spellingShingle |
Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale Candida tropicalis xylitol xylose reductase dissolved oxygen non-detoxified hydrolysate |
title_short |
Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale |
title_full |
Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale |
title_fullStr |
Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale |
title_full_unstemmed |
Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale |
title_sort |
Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale |
dc.creator.fl_str_mv |
Manjarres Pinzón, K |
dc.contributor.author.none.fl_str_mv |
Manjarres Pinzón, K |
dc.contributor.other.none.fl_str_mv |
Mendoza Meza, D Arias Zabala, M Correa Londoño, G Rodriguez Sandoval, E |
dc.subject.keywords.spa.fl_str_mv |
Candida tropicalis xylitol xylose reductase dissolved oxygen non-detoxified hydrolysate |
topic |
Candida tropicalis xylitol xylose reductase dissolved oxygen non-detoxified hydrolysate |
description |
The study of xylose reductase (XR) - one of the key enzymes in the production of xylitol - is important in the fermentation process to have maximum efficiency in the bioconversion of xylose to xylitol in lignocellulosic hydrolysate. The aim was to evaluate the effect of agitation rate and dissolved oxygen at 7 L bioreactor scale on the production of xylose reductase (XR) from Candida tropicalis during the bioconversion of xylose into xylitol in the non-detoxified oil palm empty fruit bunch (OPEFB) hydrolysate. The highest xylose consumption (95.5%) and the maximum xylitol production (5.46 g.L-1) were presented under 30% dissolved oxygen and 50 rpm. The maximum XR activity (0.646 U mg-1 protein) was obtained after 144 h of fermentation and at the same conditions of dissolved oxygen and agitation rate mentioned above. The oxygen availability influences the XR activity of C. tropicalis and the xylitol production, observing a xylitol yield factor (YP/S) of 0.27 g.g-1 and volumetric productivity (QP) of 0.33 g.L-1 h-1. At lower dissolved oxygen regardless of the agitation conditions evaluated, an increase in xylitol production was evidenced. |
publishDate |
2021 |
dc.date.submitted.none.fl_str_mv |
2021-01-25 |
dc.date.accessioned.none.fl_str_mv |
2022-11-15T21:15:10Z |
dc.date.available.none.fl_str_mv |
2022-11-15T21:15:10Z |
dc.date.issued.none.fl_str_mv |
2022-01-05 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Katherine MANJARRES-PINZÓN, Dary MENDOZA-MEZA and Mario ARIAS-ZABALA et al. Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale. Food Science and Technology. DOI: 10.1590/fst.04221 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12834/960 |
dc.identifier.doi.none.fl_str_mv |
10.1590/fst.04221 |
dc.identifier.instname.spa.fl_str_mv |
Universidad del Atlántico |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad del Atlántico |
dc.identifier.url.none.fl_str_mv |
https://www.scopus.com/record/display.uri?eid=2-s2.0-85126587101&doi=10.1590%2ffst.04221&origin=inward&txGid=003e561f119774e92aa7a4183b3e01f0 |
identifier_str_mv |
Katherine MANJARRES-PINZÓN, Dary MENDOZA-MEZA and Mario ARIAS-ZABALA et al. Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale. Food Science and Technology. DOI: 10.1590/fst.04221 10.1590/fst.04221 Universidad del Atlántico Repositorio Universidad del Atlántico |
url |
https://hdl.handle.net/20.500.12834/960 https://www.scopus.com/record/display.uri?eid=2-s2.0-85126587101&doi=10.1590%2ffst.04221&origin=inward&txGid=003e561f119774e92aa7a4183b3e01f0 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial 4.0 International |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Attribution-NonCommercial 4.0 International http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Barranquilla |
dc.publisher.discipline.spa.fl_str_mv |
Licenciatura en Ciencias Naturales |
dc.publisher.sede.spa.fl_str_mv |
Sede Norte |
dc.source.spa.fl_str_mv |
Food Science and Technology |
institution |
Universidad del Atlántico |
bitstream.url.fl_str_mv |
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/1/descarga.pdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/2/license_rdf https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/3/license.txt |
bitstream.checksum.fl_str_mv |
de43d1d1ffc9648c6f02d5df67d87237 24013099e9e6abb1575dc6ce0855efd5 67e239713705720ef0b79c50b2ececca |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace de la Universidad de Atlántico |
repository.mail.fl_str_mv |
sysadmin@mail.uniatlantico.edu.co |
_version_ |
1814203412581974016 |
spelling |
Manjarres Pinzón, Kae538a5b-8ff8-4f1c-9c30-cb3b385b5032Mendoza Meza, DArias Zabala, MCorrea Londoño, GRodriguez Sandoval, E2022-11-15T21:15:10Z2022-11-15T21:15:10Z2022-01-052021-01-25Katherine MANJARRES-PINZÓN, Dary MENDOZA-MEZA and Mario ARIAS-ZABALA et al. Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale. Food Science and Technology. DOI: 10.1590/fst.04221https://hdl.handle.net/20.500.12834/96010.1590/fst.04221Universidad del AtlánticoRepositorio Universidad del Atlánticohttps://www.scopus.com/record/display.uri?eid=2-s2.0-85126587101&doi=10.1590%2ffst.04221&origin=inward&txGid=003e561f119774e92aa7a4183b3e01f0The study of xylose reductase (XR) - one of the key enzymes in the production of xylitol - is important in the fermentation process to have maximum efficiency in the bioconversion of xylose to xylitol in lignocellulosic hydrolysate. The aim was to evaluate the effect of agitation rate and dissolved oxygen at 7 L bioreactor scale on the production of xylose reductase (XR) from Candida tropicalis during the bioconversion of xylose into xylitol in the non-detoxified oil palm empty fruit bunch (OPEFB) hydrolysate. The highest xylose consumption (95.5%) and the maximum xylitol production (5.46 g.L-1) were presented under 30% dissolved oxygen and 50 rpm. The maximum XR activity (0.646 U mg-1 protein) was obtained after 144 h of fermentation and at the same conditions of dissolved oxygen and agitation rate mentioned above. The oxygen availability influences the XR activity of C. tropicalis and the xylitol production, observing a xylitol yield factor (YP/S) of 0.27 g.g-1 and volumetric productivity (QP) of 0.33 g.L-1 h-1. At lower dissolved oxygen regardless of the agitation conditions evaluated, an increase in xylitol production was evidenced.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Food Science and TechnologyEffects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scalePúblico generalCandida tropicalisxylitolxylose reductasedissolved oxygennon-detoxified hydrolysateinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaLicenciatura en Ciencias NaturalesSede NorteAlbuquerque, T. L., Silva, I. J. Jr., Macedo, G. R., & Rocha, M. V. P. (2014). Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochemistry, 49(11), 1779-1789. http:// dx.doi.org/10.1016/j.procbio.2014.07.010.Arruda, P. V., Rodrigues, R. C. L B., Silva, D. D. V. & Felipe, M. G. A. (2011). Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate. Biodegradation, 22(4), 815-822. http://doi: 10.1007/s10532-010-9397-1.Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Analytical Biochemistry, 72(1-2), 248-254. http://dx.doi. org/10.1016/0003-2697(76)90527-3. PMid:942051.Branco, R. F., Santos, J. C., Sarrouh, B. F., Rivaldi, J. D., Pessoa, A. Jr., & Silva, S. S. (2009). Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. Journal of Chemical Technology and Biotechnology, 84(3), 326-330. http://dx.doi.org/10.1002/jctb.2042.Cocotle-Ronzon, Y., Zendejas-Zaldo, M., Castillo-Lozano, M. L., & Aguilar-Uscanga, M. G. (2012). Preliminary characterization of xylose reductase partially purified by reversed micelles from Candida tropicalis IEC5-ITV, an indigenous xylitol-producing strain. Advances in Chemical Engineering and Science, 2(1), 9-14. http://dx.doi.org/10.4236/aces.2012.21002.Dasgupta, D., Bandhu, S., Adhikari, D. K., & Ghosh, D. (2017). Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiological Research, 197, 9-21. http://dx.doi.org/10.1016/j. micres.2016.12.012. PMid:28219529.Faria, L. F. F., Gimenes, M. A. P., Nobrega, R., & Pereira, N. (2002). Influence of oxygen availability on cell growth and xylitol production by Candida guilliermondii. In: M. Finkelstein, J. D. McMillan, & B. H. Davison (Eds.), Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology Part A Enzyme Engineering and Biotechnology (pp. 449-458). Totowa: Humana Press. http://dx.doi. org/10.1007/978-1-4612-0119-9_37Ferrer, A., Requejo, A., Rodríguez, A., & Jiménez, L. (2013). Influence of temperature, time, liquid/solid ratio and sulfuric acid concentration on the hydrolysis of palm empty fruit bunches. Bioresource Technology, 129, 506-511. http://dx.doi.org/10.1016/j.biortech.2012.10.081. PMid:23266852.Gírio, F. M., Roseiro, J. C., Sá-Machado, P., Duarte-Reis, A. R., & Amaral-Collaço, M. T. (1994). Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzyme and Microbial Technology, 16(12), 1074-1078. http://dx.doi. org/10.1016/0141-0229(94)90145-7.Gurpilhares, D. B., Hasmann, F. A., Pessoa, A. Jr., & Roberto, I. C. (2009). The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. Journal of Industrial Microbiology & Biotechnology, 36(1), 87-93. http://dx.doi.org/10.1007/s10295-008-0475-x. PMid:18830730.Hernández-Pérez, A. F., Arruda, P. V., & Felipe, M. G. A. (2016). Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Brazilian Journal of Microbiology, 47(2), 489-496. http:// dx.doi.org/10.1016/j.bjm.2016.01.019. PMid:26991282.Karhumaa, K., Garcia-Sanchez, R., Hahn-Hägerdal, B., & Gorwa- Grauslund, M. F. (2007). Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 6(1), 5. http://dx.doi.org/10.1186/1475-2859-6-5. PMid:17280608.Kim, S. Y., Kim, J. H., & Oh, D. K. (1997). Improvement of xylitol production by controlling supply in Candida parapsilosis. Journal of Fermentation and Bioengineering, 83(3), 267-270. http://dx.doi. org/10.1016/S0922-338X(97)80990-7.Kklaif, H. F., Nasser, J. M., & Shakir, K. A. (2020). Production of xylose reductase and xylitol by Candida guilliermondii using wheat straw hydrolysates. Iraqi Journal of Agricultural Sciences, 51(6), 1653-1660. http://dx.doi.org/10.36103/ijas.v51i6.1192.Kresnowati, M. T. A. P., Setiadi, T., Tantra, T. M., & Rusdi, D. (2016). Microbial production of xylitol from oil palm empty fruit bunch hydrolysate: effects of inoculum and pH. Journal of Engineering and Technological Sciences, 48(5), 523-533. http://dx.doi.org/10.5614/j. eng.technol.sci.2016.48.5.2.Manaf, S. F. A., Luthfi, A. A. I., Jamaliah, M. J., & Harun, S. (2017). Interaction effects of pH and inhibitors in oil palm frond (OPF) hemicelullosic hydrolysate on xylitol production: a statistical study. The Journal of Physiological Sciences; JPS, 28(Suppl. 1), 241-255. http://dx.doi.org/10.21315/jps2017.28.s1.16.Manjarres-Pinzon, K., Arias-Zabala, M., Correa-Londono, G., & Rodriguez-Sandoval, E. (2017). Xylose recovery from dilute-acid hydrolysis of oil palm (Elaeis guineensis) empty fruit bunches for xylitol production. African Journal of Biotechnology, 16(41), 1997- 2008. http://dx.doi.org/10.5897/AJB2017.16214.Mardawati, E., Wira, D. W., Kresnowati, M., Purwadi, R., & Setiadi, T. (2015). Microbial production of xylitol from oil palm empty fruit bunches hydrolysate: the effect of glucose concentration. Journal of the Japan Institute of Energy, 94(8), 769-774. http://dx.doi. org/10.3775/jie.94.769.Mareczky, Z., Fehér, A., Fehér, C., Barta, Z., & Réczey, K. (2016). Effects of pH and aeration conditions on xylitol production by Candida and Hansenula yeasts. Periodica Polytechnica. Chemical Engineering, 60(1), 54-59. http://dx.doi.org/10.3311/PPch.8116.Martínez, E. A., & Santos, J. A. F. (2012). Influence of the use of rice bran extract as a source of nutrients on xylitol production. Food Science and Technology, 32(2), 308-313. http://dx.doi.org/10.1590/ S0101-20612012005000036.Moraes, E. J. C., Silva, D. D. V., Dussán, K. J., Tesche, L. Z., Silva, J. B. A., Rai, M., & Felipe, M. G. A. (2020). Xylitol-sweetener production from barley straw: optimization of acid hydrolysis condition with the energy consumption simulation. Waste and Biomass Valorization, 11(5), 1837-1849. http://dx.doi.org/10.1007/s12649-018-0501-9.Mussatto, S. I., & Roberto, I. C. (2005). Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii. Brazilian Archives of Biology and Technology, 48(3), 497-502. http://dx.doi. org/10.1590/S1516-89132005000300020.Niño-Camacho, L., & Torres-Sáenz, R. (2010). Implementación de diferentes técnicas analíticas para la determinación de biomasa bacteriana de cepas Pseudomonas putida biodegradadoras de fenol. Revista ION, 23, 41-46. http://dx.doi.org/10.18273/revion.Prakasham, R. S., Rao, R. S., & Hobbs, P. J. (2009). Current trends in biotechnological production of xylitol and future prospects. Current Trends in Biotechnology and Pharmacy, 3(1), 8-36.Rafiqul, I. S. M., & Sakinah, A. M. M. (2014). Production of xylose reductase from adapted Candida tropicalis grown in sawdust hydrolysate. Biocatalysis and Agricultural Biotechnology, 3(4), 227-235. http://dx.doi.org/10.1016/j.bcab.2014.05.003 » http://dx.doi.org/10.1016/j.bcab.2014.05.003Rahman, S. H. A., Choudhury, J. P., Ahmad, A. L., & Kamaruddin, A. H. (2007). Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technology, 98(3), 554-559. http://dx.doi.org/10.1016/j.biortech.2006.02.016 PMid:16647852. » http://dx.doi.org/10.1016/j.biortech.2006.02.016Rao, V. L., Goli, J. K., Gentela, J., & Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresource Technology, 213, 299-310. http://dx.doi.org/10.1016/j.biortech.2016.04.092 PMid:27142629. » http://dx.doi.org/10.1016/j.biortech.2016.04.092Sene, L., Arruda, P. V., Oliveira, S. M. M., & Felipe, M. G. A. (2011). Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Brazilian Journal of Microbiology, 42(3), 1141-1146. http://dx.doi.org/10.1590/S1517-83822011000300036 PMid:24031733. » http://dx.doi.org/10.1590/S1517-83822011000300036Silva, D. D. V., Mancilha, I. M., Silva, S. S., & Felipe, M. G. A. (2007). Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in sugarcane bagasse hydrolysate. Brazilian Archives of Biology and Technology, 50(2), 207-215. http://dx.doi.org/10.1590/S1516-89132007000200005 » http://dx.doi.org/10.1590/S1516-89132007000200005Tizazu, B. Z., Roy, K., & Moholkar, V. S. (2018). Mechanistic investigations in ultrasound-assisted xylitol fermentation. Ultrasonics Sonochemistry, 48, 321-328. http://dx.doi.org/10.1016/j.ultsonch.2018.06.014 PMid:30080557. » http://dx.doi.org/10.1016/j.ultsonch.2018.06.014Vallejos, M. E., & Area, M. C. (2017). Xylitol as bioproduct from the agro and forest biorefinery. In: A. M. Grumezescu, & A. M. Holban (Eds.), Food Bioconversion (1st ed, Chapter 12, pp. 411-432). New York: Elsevier Academic Press. http://dx.doi.org/10.1016/B978-0-12-811413-1.00012-7 » http://dx.doi.org/10.1016/B978-0-12-811413-1.00012-7Veras, H. C. T., Parachin, N. S., & Almeida, J. R. M. (2017). Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microbial Cell Factories, 16(1), 153. http://dx.doi.org/10.1186/s12934-017-0766-x PMid:28903764. » http://dx.doi.org/10.1186/s12934-017-0766-xWang, S., Li, H., Fan, X., Zhang, J., Tang, P., & Yuan, Q. (2015). Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion. Fungal Genetics and Biology, 82, 1-8. http://dx.doi.org/10.1016/j.fgb.2015.04.022 PMid:26127015. » http://dx.doi.org/10.1016/j.fgb.2015.04.022Xu, L., Liu, L., Li, S., Zheng, W., Cui, Y., Liu, R., & Sun, W. (2019). Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech, 21(2), 341-347. http://dx.doi.org/10.1007/s12355-018-0650-y » http://dx.doi.org/10.1007/s12355-018-0650-yYewale, T., Panchwagh, S., Sawale, S., Jain, R., & Dhamole, P. B. (2017). Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components. 3 Biotech, 7(1), 68. http://doi:10.1007/s13205-017-0700-2. » https://doi.org/http://doi:10.1007/s13205-017-0700-2Yewale, T., Panchwagh, S., Sawale, S., Jain, R., & Dhamole, P. B. (2017). Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components. 3 Biotech, 7(1), 68. http://doi:10.1007/s13205-017-0700-2. » https://doi.org/http://doi:10.1007/s13205-017-0700-2Zhang, M., Puri, A. K., Wang, Z., Singh, S., & Permaul, K. (2019). A unique xylose reductase from Thermomyces lanuginosus: Effect of lignocellulosic substrates and inhibitors and applicability in lignocellulosic bioconversion. Bioresource Technology, 281, 374-381. http://dx.doi.org/10.1016/j.biortech.2019.02.102 PMid:30831517. » http://dx.doi.org/10.1016/j.biortech.2019.02.102http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALdescarga.pdfdescarga.pdfapplication/pdf947582https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/1/descarga.pdfde43d1d1ffc9648c6f02d5df67d87237MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/960oai:repositorio.uniatlantico.edu.co:20.500.12834/9602022-11-15 16:15:11.454DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg== |