Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale

The study of xylose reductase (XR) - one of the key enzymes in the production of xylitol - is important in the fermentation process to have maximum efficiency in the bioconversion of xylose to xylitol in lignocellulosic hydrolysate. The aim was to evaluate the effect of agitation rate and dissolved...

Full description

Autores:
Manjarres Pinzón, K
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/960
Acceso en línea:
https://hdl.handle.net/20.500.12834/960
https://www.scopus.com/record/display.uri?eid=2-s2.0-85126587101&doi=10.1590%2ffst.04221&origin=inward&txGid=003e561f119774e92aa7a4183b3e01f0
Palabra clave:
Candida tropicalis
xylitol
xylose reductase
dissolved oxygen
non-detoxified hydrolysate
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UNIATLANT2_dc0ccebb4cc693a19868788b2ed6fed3
oai_identifier_str oai:repositorio.uniatlantico.edu.co:20.500.12834/960
network_acronym_str UNIATLANT2
network_name_str Repositorio Uniatlantico
repository_id_str
dc.title.spa.fl_str_mv Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale
title Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale
spellingShingle Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale
Candida tropicalis
xylitol
xylose reductase
dissolved oxygen
non-detoxified hydrolysate
title_short Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale
title_full Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale
title_fullStr Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale
title_full_unstemmed Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale
title_sort Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale
dc.creator.fl_str_mv Manjarres Pinzón, K
dc.contributor.author.none.fl_str_mv Manjarres Pinzón, K
dc.contributor.other.none.fl_str_mv Mendoza Meza, D
Arias Zabala, M
Correa Londoño, G
Rodriguez Sandoval, E
dc.subject.keywords.spa.fl_str_mv Candida tropicalis
xylitol
xylose reductase
dissolved oxygen
non-detoxified hydrolysate
topic Candida tropicalis
xylitol
xylose reductase
dissolved oxygen
non-detoxified hydrolysate
description The study of xylose reductase (XR) - one of the key enzymes in the production of xylitol - is important in the fermentation process to have maximum efficiency in the bioconversion of xylose to xylitol in lignocellulosic hydrolysate. The aim was to evaluate the effect of agitation rate and dissolved oxygen at 7 L bioreactor scale on the production of xylose reductase (XR) from Candida tropicalis during the bioconversion of xylose into xylitol in the non-detoxified oil palm empty fruit bunch (OPEFB) hydrolysate. The highest xylose consumption (95.5%) and the maximum xylitol production (5.46 g.L-1) were presented under 30% dissolved oxygen and 50 rpm. The maximum XR activity (0.646 U mg-1 protein) was obtained after 144 h of fermentation and at the same conditions of dissolved oxygen and agitation rate mentioned above. The oxygen availability influences the XR activity of C. tropicalis and the xylitol production, observing a xylitol yield factor (YP/S) of 0.27 g.g-1 and volumetric productivity (QP) of 0.33 g.L-1 h-1. At lower dissolved oxygen regardless of the agitation conditions evaluated, an increase in xylitol production was evidenced.
publishDate 2021
dc.date.submitted.none.fl_str_mv 2021-01-25
dc.date.accessioned.none.fl_str_mv 2022-11-15T21:15:10Z
dc.date.available.none.fl_str_mv 2022-11-15T21:15:10Z
dc.date.issued.none.fl_str_mv 2022-01-05
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Katherine MANJARRES-PINZÓN, Dary MENDOZA-MEZA and Mario ARIAS-ZABALA et al. Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale. Food Science and Technology. DOI: 10.1590/fst.04221
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12834/960
dc.identifier.doi.none.fl_str_mv 10.1590/fst.04221
dc.identifier.instname.spa.fl_str_mv Universidad del Atlántico
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad del Atlántico
dc.identifier.url.none.fl_str_mv https://www.scopus.com/record/display.uri?eid=2-s2.0-85126587101&doi=10.1590%2ffst.04221&origin=inward&txGid=003e561f119774e92aa7a4183b3e01f0
identifier_str_mv Katherine MANJARRES-PINZÓN, Dary MENDOZA-MEZA and Mario ARIAS-ZABALA et al. Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale. Food Science and Technology. DOI: 10.1590/fst.04221
10.1590/fst.04221
Universidad del Atlántico
Repositorio Universidad del Atlántico
url https://hdl.handle.net/20.500.12834/960
https://www.scopus.com/record/display.uri?eid=2-s2.0-85126587101&doi=10.1590%2ffst.04221&origin=inward&txGid=003e561f119774e92aa7a4183b3e01f0
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Attribution-NonCommercial 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Barranquilla
dc.publisher.discipline.spa.fl_str_mv Licenciatura en Ciencias Naturales
dc.publisher.sede.spa.fl_str_mv Sede Norte
dc.source.spa.fl_str_mv Food Science and Technology
institution Universidad del Atlántico
bitstream.url.fl_str_mv https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/1/descarga.pdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/2/license_rdf
https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/3/license.txt
bitstream.checksum.fl_str_mv de43d1d1ffc9648c6f02d5df67d87237
24013099e9e6abb1575dc6ce0855efd5
67e239713705720ef0b79c50b2ececca
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace de la Universidad de Atlántico
repository.mail.fl_str_mv sysadmin@mail.uniatlantico.edu.co
_version_ 1814203412581974016
spelling Manjarres Pinzón, Kae538a5b-8ff8-4f1c-9c30-cb3b385b5032Mendoza Meza, DArias Zabala, MCorrea Londoño, GRodriguez Sandoval, E2022-11-15T21:15:10Z2022-11-15T21:15:10Z2022-01-052021-01-25Katherine MANJARRES-PINZÓN, Dary MENDOZA-MEZA and Mario ARIAS-ZABALA et al. Effects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scale. Food Science and Technology. DOI: 10.1590/fst.04221https://hdl.handle.net/20.500.12834/96010.1590/fst.04221Universidad del AtlánticoRepositorio Universidad del Atlánticohttps://www.scopus.com/record/display.uri?eid=2-s2.0-85126587101&doi=10.1590%2ffst.04221&origin=inward&txGid=003e561f119774e92aa7a4183b3e01f0The study of xylose reductase (XR) - one of the key enzymes in the production of xylitol - is important in the fermentation process to have maximum efficiency in the bioconversion of xylose to xylitol in lignocellulosic hydrolysate. The aim was to evaluate the effect of agitation rate and dissolved oxygen at 7 L bioreactor scale on the production of xylose reductase (XR) from Candida tropicalis during the bioconversion of xylose into xylitol in the non-detoxified oil palm empty fruit bunch (OPEFB) hydrolysate. The highest xylose consumption (95.5%) and the maximum xylitol production (5.46 g.L-1) were presented under 30% dissolved oxygen and 50 rpm. The maximum XR activity (0.646 U mg-1 protein) was obtained after 144 h of fermentation and at the same conditions of dissolved oxygen and agitation rate mentioned above. The oxygen availability influences the XR activity of C. tropicalis and the xylitol production, observing a xylitol yield factor (YP/S) of 0.27 g.g-1 and volumetric productivity (QP) of 0.33 g.L-1 h-1. At lower dissolved oxygen regardless of the agitation conditions evaluated, an increase in xylitol production was evidenced.application/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Food Science and TechnologyEffects of agitation rate and dissolved oxygen on xylose reductase activity during xylitol production at bioreactor scalePúblico generalCandida tropicalisxylitolxylose reductasedissolved oxygennon-detoxified hydrolysateinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1BarranquillaLicenciatura en Ciencias NaturalesSede NorteAlbuquerque, T. L., Silva, I. J. Jr., Macedo, G. R., & Rocha, M. V. P. (2014). Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochemistry, 49(11), 1779-1789. http:// dx.doi.org/10.1016/j.procbio.2014.07.010.Arruda, P. V., Rodrigues, R. C. L B., Silva, D. D. V. & Felipe, M. G. A. (2011). Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate. Biodegradation, 22(4), 815-822. http://doi: 10.1007/s10532-010-9397-1.Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Analytical Biochemistry, 72(1-2), 248-254. http://dx.doi. org/10.1016/0003-2697(76)90527-3. PMid:942051.Branco, R. F., Santos, J. C., Sarrouh, B. F., Rivaldi, J. D., Pessoa, A. Jr., & Silva, S. S. (2009). Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. Journal of Chemical Technology and Biotechnology, 84(3), 326-330. http://dx.doi.org/10.1002/jctb.2042.Cocotle-Ronzon, Y., Zendejas-Zaldo, M., Castillo-Lozano, M. L., & Aguilar-Uscanga, M. G. (2012). Preliminary characterization of xylose reductase partially purified by reversed micelles from Candida tropicalis IEC5-ITV, an indigenous xylitol-producing strain. Advances in Chemical Engineering and Science, 2(1), 9-14. http://dx.doi.org/10.4236/aces.2012.21002.Dasgupta, D., Bandhu, S., Adhikari, D. K., & Ghosh, D. (2017). Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiological Research, 197, 9-21. http://dx.doi.org/10.1016/j. micres.2016.12.012. PMid:28219529.Faria, L. F. F., Gimenes, M. A. P., Nobrega, R., & Pereira, N. (2002). Influence of oxygen availability on cell growth and xylitol production by Candida guilliermondii. In: M. Finkelstein, J. D. McMillan, & B. H. Davison (Eds.), Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology Part A Enzyme Engineering and Biotechnology (pp. 449-458). Totowa: Humana Press. http://dx.doi. org/10.1007/978-1-4612-0119-9_37Ferrer, A., Requejo, A., Rodríguez, A., & Jiménez, L. (2013). Influence of temperature, time, liquid/solid ratio and sulfuric acid concentration on the hydrolysis of palm empty fruit bunches. Bioresource Technology, 129, 506-511. http://dx.doi.org/10.1016/j.biortech.2012.10.081. PMid:23266852.Gírio, F. M., Roseiro, J. C., Sá-Machado, P., Duarte-Reis, A. R., & Amaral-Collaço, M. T. (1994). Effect of oxygen transfer rate on levels of key enzymes of xylose metabolism in Debaryomyces hansenii. Enzyme and Microbial Technology, 16(12), 1074-1078. http://dx.doi. org/10.1016/0141-0229(94)90145-7.Gurpilhares, D. B., Hasmann, F. A., Pessoa, A. Jr., & Roberto, I. C. (2009). The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. Journal of Industrial Microbiology & Biotechnology, 36(1), 87-93. http://dx.doi.org/10.1007/s10295-008-0475-x. PMid:18830730.Hernández-Pérez, A. F., Arruda, P. V., & Felipe, M. G. A. (2016). Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Brazilian Journal of Microbiology, 47(2), 489-496. http:// dx.doi.org/10.1016/j.bjm.2016.01.019. PMid:26991282.Karhumaa, K., Garcia-Sanchez, R., Hahn-Hägerdal, B., & Gorwa- Grauslund, M. F. (2007). Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories, 6(1), 5. http://dx.doi.org/10.1186/1475-2859-6-5. PMid:17280608.Kim, S. Y., Kim, J. H., & Oh, D. K. (1997). Improvement of xylitol production by controlling supply in Candida parapsilosis. Journal of Fermentation and Bioengineering, 83(3), 267-270. http://dx.doi. org/10.1016/S0922-338X(97)80990-7.Kklaif, H. F., Nasser, J. M., & Shakir, K. A. (2020). Production of xylose reductase and xylitol by Candida guilliermondii using wheat straw hydrolysates. Iraqi Journal of Agricultural Sciences, 51(6), 1653-1660. http://dx.doi.org/10.36103/ijas.v51i6.1192.Kresnowati, M. T. A. P., Setiadi, T., Tantra, T. M., & Rusdi, D. (2016). Microbial production of xylitol from oil palm empty fruit bunch hydrolysate: effects of inoculum and pH. Journal of Engineering and Technological Sciences, 48(5), 523-533. http://dx.doi.org/10.5614/j. eng.technol.sci.2016.48.5.2.Manaf, S. F. A., Luthfi, A. A. I., Jamaliah, M. J., & Harun, S. (2017). Interaction effects of pH and inhibitors in oil palm frond (OPF) hemicelullosic hydrolysate on xylitol production: a statistical study. The Journal of Physiological Sciences; JPS, 28(Suppl. 1), 241-255. http://dx.doi.org/10.21315/jps2017.28.s1.16.Manjarres-Pinzon, K., Arias-Zabala, M., Correa-Londono, G., & Rodriguez-Sandoval, E. (2017). Xylose recovery from dilute-acid hydrolysis of oil palm (Elaeis guineensis) empty fruit bunches for xylitol production. African Journal of Biotechnology, 16(41), 1997- 2008. http://dx.doi.org/10.5897/AJB2017.16214.Mardawati, E., Wira, D. W., Kresnowati, M., Purwadi, R., & Setiadi, T. (2015). Microbial production of xylitol from oil palm empty fruit bunches hydrolysate: the effect of glucose concentration. Journal of the Japan Institute of Energy, 94(8), 769-774. http://dx.doi. org/10.3775/jie.94.769.Mareczky, Z., Fehér, A., Fehér, C., Barta, Z., & Réczey, K. (2016). Effects of pH and aeration conditions on xylitol production by Candida and Hansenula yeasts. Periodica Polytechnica. Chemical Engineering, 60(1), 54-59. http://dx.doi.org/10.3311/PPch.8116.Martínez, E. A., & Santos, J. A. F. (2012). Influence of the use of rice bran extract as a source of nutrients on xylitol production. Food Science and Technology, 32(2), 308-313. http://dx.doi.org/10.1590/ S0101-20612012005000036.Moraes, E. J. C., Silva, D. D. V., Dussán, K. J., Tesche, L. Z., Silva, J. B. A., Rai, M., & Felipe, M. G. A. (2020). Xylitol-sweetener production from barley straw: optimization of acid hydrolysis condition with the energy consumption simulation. Waste and Biomass Valorization, 11(5), 1837-1849. http://dx.doi.org/10.1007/s12649-018-0501-9.Mussatto, S. I., & Roberto, I. C. (2005). Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii. Brazilian Archives of Biology and Technology, 48(3), 497-502. http://dx.doi. org/10.1590/S1516-89132005000300020.Niño-Camacho, L., & Torres-Sáenz, R. (2010). Implementación de diferentes técnicas analíticas para la determinación de biomasa bacteriana de cepas Pseudomonas putida biodegradadoras de fenol. Revista ION, 23, 41-46. http://dx.doi.org/10.18273/revion.Prakasham, R. S., Rao, R. S., & Hobbs, P. J. (2009). Current trends in biotechnological production of xylitol and future prospects. Current Trends in Biotechnology and Pharmacy, 3(1), 8-36.Rafiqul, I. S. M., & Sakinah, A. M. M. (2014). Production of xylose reductase from adapted Candida tropicalis grown in sawdust hydrolysate. Biocatalysis and Agricultural Biotechnology, 3(4), 227-235. http://dx.doi.org/10.1016/j.bcab.2014.05.003 » http://dx.doi.org/10.1016/j.bcab.2014.05.003Rahman, S. H. A., Choudhury, J. P., Ahmad, A. L., & Kamaruddin, A. H. (2007). Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresource Technology, 98(3), 554-559. http://dx.doi.org/10.1016/j.biortech.2006.02.016 PMid:16647852. » http://dx.doi.org/10.1016/j.biortech.2006.02.016Rao, V. L., Goli, J. K., Gentela, J., & Koti, S. (2016). Bioconversion of lignocellulosic biomass to xylitol: an overview. Bioresource Technology, 213, 299-310. http://dx.doi.org/10.1016/j.biortech.2016.04.092 PMid:27142629. » http://dx.doi.org/10.1016/j.biortech.2016.04.092Sene, L., Arruda, P. V., Oliveira, S. M. M., & Felipe, M. G. A. (2011). Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Brazilian Journal of Microbiology, 42(3), 1141-1146. http://dx.doi.org/10.1590/S1517-83822011000300036 PMid:24031733. » http://dx.doi.org/10.1590/S1517-83822011000300036Silva, D. D. V., Mancilha, I. M., Silva, S. S., & Felipe, M. G. A. (2007). Improvement of biotechnological xylitol production by glucose during cultive of Candida guilliermondii in sugarcane bagasse hydrolysate. Brazilian Archives of Biology and Technology, 50(2), 207-215. http://dx.doi.org/10.1590/S1516-89132007000200005 » http://dx.doi.org/10.1590/S1516-89132007000200005Tizazu, B. Z., Roy, K., & Moholkar, V. S. (2018). Mechanistic investigations in ultrasound-assisted xylitol fermentation. Ultrasonics Sonochemistry, 48, 321-328. http://dx.doi.org/10.1016/j.ultsonch.2018.06.014 PMid:30080557. » http://dx.doi.org/10.1016/j.ultsonch.2018.06.014Vallejos, M. E., & Area, M. C. (2017). Xylitol as bioproduct from the agro and forest biorefinery. In: A. M. Grumezescu, & A. M. Holban (Eds.), Food Bioconversion (1st ed, Chapter 12, pp. 411-432). New York: Elsevier Academic Press. http://dx.doi.org/10.1016/B978-0-12-811413-1.00012-7 » http://dx.doi.org/10.1016/B978-0-12-811413-1.00012-7Veras, H. C. T., Parachin, N. S., & Almeida, J. R. M. (2017). Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microbial Cell Factories, 16(1), 153. http://dx.doi.org/10.1186/s12934-017-0766-x PMid:28903764. » http://dx.doi.org/10.1186/s12934-017-0766-xWang, S., Li, H., Fan, X., Zhang, J., Tang, P., & Yuan, Q. (2015). Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion. Fungal Genetics and Biology, 82, 1-8. http://dx.doi.org/10.1016/j.fgb.2015.04.022 PMid:26127015. » http://dx.doi.org/10.1016/j.fgb.2015.04.022Xu, L., Liu, L., Li, S., Zheng, W., Cui, Y., Liu, R., & Sun, W. (2019). Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate. Sugar Tech, 21(2), 341-347. http://dx.doi.org/10.1007/s12355-018-0650-y » http://dx.doi.org/10.1007/s12355-018-0650-yYewale, T., Panchwagh, S., Sawale, S., Jain, R., & Dhamole, P. B. (2017). Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components. 3 Biotech, 7(1), 68. http://doi:10.1007/s13205-017-0700-2. » https://doi.org/http://doi:10.1007/s13205-017-0700-2Yewale, T., Panchwagh, S., Sawale, S., Jain, R., & Dhamole, P. B. (2017). Xylitol production from non-detoxified and non-sterile lignocellulosic hydrolysate using low-cost industrial media components. 3 Biotech, 7(1), 68. http://doi:10.1007/s13205-017-0700-2. » https://doi.org/http://doi:10.1007/s13205-017-0700-2Zhang, M., Puri, A. K., Wang, Z., Singh, S., & Permaul, K. (2019). A unique xylose reductase from Thermomyces lanuginosus: Effect of lignocellulosic substrates and inhibitors and applicability in lignocellulosic bioconversion. Bioresource Technology, 281, 374-381. http://dx.doi.org/10.1016/j.biortech.2019.02.102 PMid:30831517. » http://dx.doi.org/10.1016/j.biortech.2019.02.102http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALdescarga.pdfdescarga.pdfapplication/pdf947582https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/1/descarga.pdfde43d1d1ffc9648c6f02d5df67d87237MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81306https://repositorio.uniatlantico.edu.co/bitstream/20.500.12834/960/3/license.txt67e239713705720ef0b79c50b2ececcaMD5320.500.12834/960oai:repositorio.uniatlantico.edu.co:20.500.12834/9602022-11-15 16:15:11.454DSpace de la Universidad de Atlánticosysadmin@mail.uniatlantico.edu.coVMOpcm1pbm9zIGdlbmVyYWxlcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbwoKRWwgKGxvcykgYXV0b3IgKGVzKSBoYW4gYXNlZ3VyYWRvIChuKSBsbyBzaWd1aWVudGUgc29icmUgbGEgb2JyYSBhIGludGVncmFyIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZToKCuKXjwlFcyBvcmlnaW5hbCwgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hLCBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcyB5IHBvc2VlIGxhIHRpdHVsYXJpZGFkLgril48JQXN1bWlyw6FuIGxhIHJlc3BvbnNhYmlsaWRhZCB0b3RhbCBwb3IgZWwgY29udGVuaWRvIGEgbGEgb2JyYSBhbnRlIGxhIEluc3RpdHVjacOzbiB5IHRlcmNlcm9zLgril48JQXV0b3JpemFuIGEgdMOtdHVsbyBncmF0dWl0byB5IHJlbnVuY2lhcyBhIHJlY2liaXIgZW1vbHVtZW50b3MgcG9yIGxhcyBhY3RpdmlkYWRlcyBxdWUgc2UgcmVhbGljZW4gY29uIGVsbGEsIHNlZ8O6biBzdSBsaWNlbmNpYS4KCgpMYSBVbml2ZXJzaWRhZCBkZWwgQXRsw6FudGljbywgcG9yIHN1IHBhcnRlLCBzZSBjb21wcm9tZXRlIGEgYWN0dWFyIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyIHkgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgZGVtw6FzIG5vcm1hcyBnZW5lcmFsZXMgc29icmUgbGEgbWF0ZXJpYSB5IGVsIEFjdWVyZG8gU3VwZXJpb3IgMDAxIGRlIDE3IGRlIG1hcnpvIGRlIDIwMTEsIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBleHBpZGUgZWwgRXN0YXR1dG8gZGUgUHJvcGllZGFkIEludGVsZWN0dWFsIGRlIGxhIFVuaXZlcnNpZGFkIGRlbCBBdGzDoW50aWNvLgoKUG9yIMO6bHRpbW8sIGhhbiBzaWRvIGluZm9ybWFkb3Mgc29icmUgZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcyBwYXJhIGZpbmVzIGFjYWTDqW1pY29zIHkgZW4gYXBsaWNhY2nDs24gZGUgY29udmVuaW9zIGNvbiB0ZXJjZXJvcyBvIHNlcnZpY2lvcyBjb25leG9zIGNvbiBhY3RpdmlkYWRlcyBwcm9waWFzIGRlIGxhIGFjYWRlbWlhLCBiYWpvIGVsIGVzdHJpY3RvIGN1bXBsaW1pZW50byBkZSBsb3MgcHJpbmNpcGlvcyBkZSBsZXkuCgpMYXMgY29uc3VsdGFzLCBjb3JyZWNjaW9uZXMgeSBzdXByZXNpb25lcyBkZSBkYXRvcyBwZXJzb25hbGVzIHB1ZWRlbiBwcmVzZW50YXJzZSBhbCBjb3JyZW8gZWxlY3Ryw7NuaWNvIGhhYmVhc2RhdGFAbWFpbC51bmlhdGxhbnRpY28uZWR1LmNvCg==