Reduction of Postharvest Quality Loss and Microbiological Decay of Tomato “Chonto” (Solanum lycopersicum L.) Using Chitosan-E Essential Oil-Based Edible Coatings under Low-Temperature Storage

The tomato (Solanum lycopersicum L.) is one of the many essential vegetables around the world due to its nutritive content and attractive flavor. However, its short shelf-life and postharvest losses affect its marketing. In this study, the effects of chitosan-Ruta graveolens (CS + RGEO) essential oi...

Full description

Autores:
Peralta-Ruiz, Yeimmy
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Atlántico
Repositorio:
Repositorio Uniatlantico
Idioma:
eng
OAI Identifier:
oai:repositorio.uniatlantico.edu.co:20.500.12834/848
Acceso en línea:
https://hdl.handle.net/20.500.12834/848
Palabra clave:
antifungal; chitosan coatings; Ruta graveolens essential oil; postharvest quality; Solanum lycopersicum
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
Description
Summary:The tomato (Solanum lycopersicum L.) is one of the many essential vegetables around the world due to its nutritive content and attractive flavor. However, its short shelf-life and postharvest losses affect its marketing. In this study, the effects of chitosan-Ruta graveolens (CS + RGEO) essential oil coatings on the postharvest quality of Tomato var. “chonto” stored at low temperature (4 ◦C) for 12 days are reported. The film-forming dispersions (FFD) were eco-friendly synthesized and presented low viscosities (between 0.126 and 0.029 Pa s), small particle sizes (between 1.29 and 1.56 µm), and low densities. The mature index (12.65% for uncoated fruits and 10.21% for F4 coated tomatoes), weight loss (29.8% for F1 and 16.7% for F5 coated tomatoes), and decay index (3.0 for uncoated and 1.0 for F5 coated tomatoes) were significantly different, indicating a preservative effect on the quality of the tomato. Moreover, aerobic mesophilic bacteria were significantly reduced (in five Log CFU/g compared to control) by using 15 µL/mL of RGEO. The coatings, including 10 and 15 µL/mL of RGEO, completely inhibited the mold and yeast growth on tomato surfaces without negatively affecting the consumer acceptation, as the sensorial analysis demonstrated. The results presented in this study show that CS + RGEO coatings are promising in the postharvest treatment of tomato var. “chonto”