Identificación y análisis de las variables externas e internas que influyen en la estimación de la probabilidad de rotación de empleados

En el entorno empresarial actual, la rotación de empleados se ha convertido en un desafío significativo para las organizaciones, afectando tanto la estabilidad operativa como la eficiencia económica. La alta rotación de personal no solo incrementa los costos de reclutamiento y capacitación, sino que...

Full description

Autores:
Lora Hernández, Juan Pablo
Angarita Coba, Luis Angel
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74649
Acceso en línea:
https://hdl.handle.net/1992/74649
Palabra clave:
Rotación de empleados
Satisfacción laboral
Cultura organizacional
Recursos humanos
Análisis predictivo
Análisis estadístico
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial 4.0 International
id UNIANDES2_c1602945d19a33673c8f54ebef214fd2
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74649
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Identificación y análisis de las variables externas e internas que influyen en la estimación de la probabilidad de rotación de empleados
title Identificación y análisis de las variables externas e internas que influyen en la estimación de la probabilidad de rotación de empleados
spellingShingle Identificación y análisis de las variables externas e internas que influyen en la estimación de la probabilidad de rotación de empleados
Rotación de empleados
Satisfacción laboral
Cultura organizacional
Recursos humanos
Análisis predictivo
Análisis estadístico
Ingeniería
title_short Identificación y análisis de las variables externas e internas que influyen en la estimación de la probabilidad de rotación de empleados
title_full Identificación y análisis de las variables externas e internas que influyen en la estimación de la probabilidad de rotación de empleados
title_fullStr Identificación y análisis de las variables externas e internas que influyen en la estimación de la probabilidad de rotación de empleados
title_full_unstemmed Identificación y análisis de las variables externas e internas que influyen en la estimación de la probabilidad de rotación de empleados
title_sort Identificación y análisis de las variables externas e internas que influyen en la estimación de la probabilidad de rotación de empleados
dc.creator.fl_str_mv Lora Hernández, Juan Pablo
Angarita Coba, Luis Angel
dc.contributor.advisor.none.fl_str_mv Ávila Cifuentes, Oscar Javier
Manrique Piramanrique, Rubén Francisco
dc.contributor.author.none.fl_str_mv Lora Hernández, Juan Pablo
Angarita Coba, Luis Angel
dc.subject.keyword.none.fl_str_mv Rotación de empleados
Satisfacción laboral
Cultura organizacional
Recursos humanos
Análisis predictivo
Análisis estadístico
topic Rotación de empleados
Satisfacción laboral
Cultura organizacional
Recursos humanos
Análisis predictivo
Análisis estadístico
Ingeniería
dc.subject.themes.spa.fl_str_mv Ingeniería
description En el entorno empresarial actual, la rotación de empleados se ha convertido en un desafío significativo para las organizaciones, afectando tanto la estabilidad operativa como la eficiencia económica. La alta rotación de personal no solo incrementa los costos de reclutamiento y capacitación, sino que también impacta negativamente en la moral y productividad de los empleados restantes. A pesar de las diversas estrategias implementadas por las empresas en el ámbito colombiano para mitigar este fenómeno, la comprensión completa de las variables que influyen en la decisión de los empleados de dejar la organización sigue siendo limitada, ya que abarca una gran cantidad de ámbitos que van más allá de la parte personal del trabajador y lo profesional en cada caso. Esta investigación busca presentar una primera aproximación hacia los factores o variables más relevantes que afectan la probabilidad de rotación de empleados. Esto se realiza a través de un enfoque metodológico que combina una revisión exhaustiva de la literatura académica y la realización de un grupo focal con tres diferentes expertos en los ámbitos relacionados con los recursos humanos y el manejo de personal en diversos sectores. El objetivo es conseguir un acercamiento a la realidad de esta situación en Colombia, contrastando los hallazgos con el contexto puntual de cada caso y abriendo la posibilidad de evaluar diferentes estrategias de retención que ataquen la problemática de la alta rotación.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-23T14:50:04Z
dc.date.available.none.fl_str_mv 2024-07-23T14:50:04Z
dc.date.issued.none.fl_str_mv 2024-07-19
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74649
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74649
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Garg, N., Mahipalan, M., & Sharma, N. (2023). Does workplace toxicity influence turnover intentions among Indian healthcare employees? Investigating the moderating role of gratitude. Journal Of Health Organization And Management, 37(2), 250-272. https://doi.org/10.1108/jhom-08-2022-0233
Battineni, G., Sagaro, G. G., Chinatalapudi, N., & Amenta, F. (2020). Applications of machine learning predictive models in the chronic disease diagnosis. In Journal of Personalized Medicine (Vol. 10, Issue 2). MDPI AG. https://doi.org/10.3390/jpm10020021
Lin, C. Y., & Huang, C. K. (2020). Employee turnover intentions and job performance from a planned change: the effects of an organizational learning culture and job satisfaction. International Journal of Manpower, 42(3), 409–423. https://doi.org/10.1108/IJM-08-2018-0281
Porkodi, S., Srihari, S., & Vijayakumar, N. (2022). Talent management by predicting employee attrition using enhanced weighted forest optimization algorithm with improved random forest classifier. International Journal of Advanced Technology and Engineering Exploration, 9(90), 563–582. https://doi.org/10.19101/IJATEE.2021.875340
Naz, K., Siddiqui, I. F., Koo, J., Khan, M. A., & Qureshi, N. M. F. (2022). Predictive Modeling of Employee Churn Analysis for IoT-Enabled Software Industry. Applied Sciences (Switzerland), 12(20). https://doi.org/10.3390/app122010495
Fallucchi, F., Coladangelo, M., Giuliano, R., & de Luca, E. W. (2020). Predicting employee attrition using machine learning techniques. Computers, 9(4), 1–17. https://doi.org/10.3390/computers9040086
Srivastava, P. R., & Eachempati, P. (2021). Intelligent Employee Retention System for Attrition Rate Analysis and Churn Prediction: An Ensemble Machine Learning and Multi- Criteria Decision-Making Approach. Journal of Global Information Management, 29(6). https://doi.org/10.4018/JGIM.20211101.oa23
Alsaadi, E. M. T. A., Khlebus, S. F., & Alabaichi, A. (2022). Identification of human resource analytics using machine learning algorithms. Telkomnika (Telecommunication Computing Electronics and Control), 20(5), 1004–1015. https://doi.org/10.12928/TELKOMNIKA.v20i5.21818
Yadav, S., Jain, A., & Singh, D. (2018). Early Prediction of Employee Attrition using Data Mining Techniques. Proceedings Of The 8th International Advance Computing Conference, IACC 2018. https://doi.org/10.1109/iadcc.2018.8692137
Krishna, S., & Sidharth, S. (2023). AI-Powered Workforce Analytics: Maximizing Business and Employee Success through Predictive Attrition Modelling. International Journal of Performability Engineering, 19(3), 203–215. https://doi.org/10.23940/ijpe.23.03.p6.203215
Krishna, S., & Sidharth, S. (2022). HR Analytics: Employee Attrition Analysis using Random Forest. International Journal of Performability Engineering, 18(4), 275–281. https://doi.org/10.23940/ijpe.22.04.p5.275281
Park, J., Feng, Y., & Jeong, S. P. (2024). Developing an advanced prediction model for new employee turnover intention utilizing machine learning techniques. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-023-50593-4
Yuan, S., Kroon, B., & Kramer, A. (2024). Building prediction models with grouped data: A case study on the prediction of turnover intention. Human Resource Management Journal, 34(1), 20–38. https://doi.org/10.1111/1748-8583.12396
Wang, X., & Zhi, J. (2021). A machine learning-based analytical framework for employee turnover prediction. Journal of Management Analytics, 8(3), 351–370. https://doi.org/10.1080/23270012.2021.1961318
Punnoose, R., & Xlri -Xavier, C. (2016). Prediction of Employee Turnover in Organizations using Machine Learning Algorithms A case for Extreme Gradient Boosting. In IJARAI) International Journal of Advanced Research in Artificial Intelligence (Vol. 5, Issue 9). www.ijarai.thesai.org
Vasa, J., & Masrani, K. (2019). Foreseeing employee attritions using diverse data mining strategies. International Journal of Recent Technology and Engineering, 8(3), 620–626. https://doi.org/10.35940/ijrte.B2406.098319
Ghazi, A. H., Elsayed, S. I., & Khedr, A. E. (2021). A Proposed Model for Predicting Employee Turnover of Information Technology Specialists Using Data Mining Techniques. International Journal Of Electrical And Computer Engineering Systems, 12(2), 113-121. https://doi.org/10.32985/ijeces.12.2.6
Hossen, M. A., Hossain, E., Ishwar, A. K. Z., & Siddika, F. (2021). Ensemble method based architecture using random forest importance to predict employee’s turn over. Journal of Physics: Conference Series, 1755(1). https://doi.org/10.1088/1742-6596/1755/1/012039
Yahia, N. ben, Hlel, J., & Colomo-Palacios, R. (2021). From Big Data to Deep Data to Support People Analytics for Employee Attrition Prediction. IEEE Access, 9, 60447–60458. https://doi.org/10.1109/ACCESS.2021.3074559
Chakraborty, R., Mridha, K., Shaw, R. N., & Ghosh, A. (2021, September 24). Study and Prediction Analysis of the Employee Turnover using Machine Learning Approaches. 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies, GUCON 2021. https://doi.org/10.1109/GUCON50781.2021.9573759
Romão, S., Ribeiro, N., Gomes, D. R., & Singh, S. (2022). The Impact of Leaders’ Coaching Skills on Employees’ Happiness and Turnover Intention. Administrative Sciences, 12(3). https://doi.org/10.3390/admsci12030084
He, Z., Chen, L., & Shafait, Z. (2023). How psychological contract violation impacts turnover intentions of knowledge workers? The moderating effect of job embeddedness. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e14409
Almerri, H. S. H. (2023). Culture on Employee Retention: Moderating Role of Employee Engagement. Journal of System and Management Sciences, 13(4), 488–507. https://doi.org/10.33168/JSMS.2023.0429
Alkandari, I., Alsaeed, F., Al-Kandari, A., Alsaber, A., Ullah, K., Hamza, K., & Alqatan, A. (2023). DETERMINANTS OF EMPLOYEES’ TURNOVER INTENTION. Journal of Governance and Regulation, 12(4), 29–37. https://doi.org/10.22495/jgrv12i4art3
Liu, J., Long, Y., Fang, M., He, R., Wang, T., & Chen, G. (2018). Analyzing employee turnover based on job skills. ACM International Conference Proceeding Series, 16–21. https://doi.org/10.1145/3224207.3224209
Yasin, R., Jan, G., Huseynova, A., & Atif, M. (2023). Inclusive leadership and turnover intention: the role of follower–leader goal congruence and organizational commitment. Management Decision, 61(3), 589–609. https://doi.org/10.1108/MD-07-2021-0925
Zhao, Y., Hryniewicki, M. K., Cheng, F., Fu, B., & Zhu, X. (2018). Employee turnover prediction with machine learning: A reliable approach. Advances in Intelligent Systems and Computing, 869, 737–758. https://doi.org/10.1007/978-3-030-01057-7_56
Yan, Z., Mansor, Z. D., Choo, W. C., & Abdullah, A. R. (2021). How to reduce employees’ turnover intention from the psychological perspective: A mediated moderation model. Psychology Research and Behavior Management, 14, 185–197. https://doi.org/10.2147/PRBM.S293839
Tsen, M. K., Gu, M., Tan, C. M., & Goh, S. K. (2021). Does flexible work arrangements decrease or increase turnover intention? A comparison between the social exchange theory and border theory. International Journal of Sociology and Social Policy. https://doi.org/10.1108/IJSSP-08-2021-0196
Gopalan, N., Beutell, N. J., & Alstete, J. W. (2023). Can trust in management help? Job satisfaction, healthy lifestyle, and turnover intentions. International Journal of Organization Theory and Behavior, 26(3), 185–202. https://doi.org/10.1108/IJOTB-09-2022-0180
Liu, Z., & Wong, H. (2023). Linking authentic leadership and employee turnover intention: the influences of sense of calling and job satisfaction. Leadership and Organization Development Journal, 44(5), 585–608. https://doi.org/10.1108/LODJ-01-2023-0044
Alam, M. M., Mohiuddin, K., Islam, M. K., Hassan, M., Hoque, M. A. U., & Allayear, S. M. (2019). A machine learning approach to analyze and reduce features to a significant number for employee’s turn over prediction model. Advances in Intelligent Systems and Computing, 857, 142–159. https://doi.org/10.1007/978-3-030-01177-2_11
Iqbal, J., Asghar, A., & Asghar, M. Z. (2022). Effect of Despotic Leadership on Employee Turnover Intention: Mediating Toxic Workplace Environment and Cognitive Distraction in Academic Institutions. Behavioral Sciences, 12(5). https://doi.org/10.3390/bs12050125
N Nguyen, D. T., Homolka, L., Duc Hoang, S., Chi, H., & D Nguyen, H. C. (2022). Employee Retention and the Moderating Role of Psychological Ownership in Retail. OPERATIONS AND SUPPLY CHAIN MANAGEMENT, 15(3), 313–327
Gharbi, H., Aliane, N., al Falah, K. A., & Sobaih, A. E. E. (2022). You Really Affect Me: The Role of Social Influence in the Relationship between Procedural Justice and Turnover Intention. International Journal of Environmental Research and Public Health, 19(9). https://doi.org/10.3390/ijerph19095162
Laulié, L., Pavez, I., Martínez Echeverría, J., Cea, P., & Briceño Jiménez, G. (2021). How leader contingent reward behavior impacts employee work engagement and turnover intention: the moderating role of age. Academia Revista Latinoamericana de Administracion, 34(4), 510–529. https://doi.org/10.1108/ARLA-12-2019-0241
Boutmaghzoute, H., & Moustaghfir, K. (2021). Exploring the relationship between corporate social responsibility actions and employee retention: A human resource management perspective. Human Systems Management, 40(6), 789–801. https://doi.org/10.3233/HSM-211202
Schaap, P., & Olckers, C. (2020). Relationships between employee retention factors and attitudinal antecedents of voluntary turnover: An extended structural equation modelling approach. SA Journal Of Human Resource Management, 18. https://doi.org/10.4102/sajhrm.v18i0.1358
Farooq, H., Janjua, U. I., Madni, T. M., Waheed, A., Zareei, M., & Alanazi, F. (2022). Identification and Analysis of Factors Influencing Turnover Intention of Pakistan IT Professionals: An Empirical Study. IEEE Access, 10, 64234–64256. https://doi.org/10.1109/ACCESS.2022.3181753
Kasdorf, R. L., & Kayaalp, A. (2022). Employee career development and turnover: a moderated mediation model. International Journal of Organizational Analysis, 30(2), 324–339. https://doi.org/10.1108/IJOA-09-2020-2416
Kaur, R., & Randhawa, G. (2021). Supportive supervisor to curtail turnover intentions: do employee engagement and work–life balance play any role? Evidence-Based HRM, 9(3), 241–257. https://doi.org/10.1108/EBHRM-12-2019-0118
Memon, M. A., Salleh, R., & Baharom, M. N. R. (2015). Linking person-job fit, person-organization fit, employee engagement and turnover intention: A three-step conceptual model. Asian Social Science, 11(2), 313–320. https://doi.org/10.5539/ass.v11n2p313
Ahmad, R., Nawaz, M. R., Ishaq, M. I., Khan, M. M., & Ashraf, H. A. (2023). Social exchange theory: Systematic review and future directions. In Frontiers in Psychology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fpsyg.2022.1015921
dc.rights.en.fl_str_mv Attribution-NonCommercial 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial 4.0 International
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 78 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería de Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/a2065b6f-4442-410b-bb88-180e30b42774/download
https://repositorio.uniandes.edu.co/bitstreams/4004fa7e-b51c-46e4-94d9-076ae441c10e/download
https://repositorio.uniandes.edu.co/bitstreams/eed67f0e-20e5-4e5e-85a0-50914a1b612a/download
https://repositorio.uniandes.edu.co/bitstreams/0720c139-b93d-45c7-a4c8-3b50a6e48dc3/download
https://repositorio.uniandes.edu.co/bitstreams/5d3133c7-a75c-4b08-ab89-d0a7843f451b/download
https://repositorio.uniandes.edu.co/bitstreams/0999a9a1-bce5-4c3c-b8f0-3b4b015d90e4/download
https://repositorio.uniandes.edu.co/bitstreams/e2a3f2a7-12ca-4a96-b8cd-3c58f0126d51/download
https://repositorio.uniandes.edu.co/bitstreams/be384883-def6-4ec9-8050-b9798d256458/download
bitstream.checksum.fl_str_mv d276f1c07bea0d356c6ab6ebbf55e0b8
23bf3777e381cf6e0668453bb0019ceb
ae9e573a68e7f92501b6913cc846c39f
24013099e9e6abb1575dc6ce0855efd5
44c5bf737d59fbdaa20a6516a88cb8c0
e1c06d85ae7b8b032bef47e42e4c08f9
659cfc3661dfe062fbf90df60cb5e753
0555609708c4f24bdf003ba5ce892d65
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1818112012687769600
spelling Ávila Cifuentes, Oscar Javiervirtual::19077-1Manrique Piramanrique, Rubén Franciscovirtual::19078-1Lora Hernández, Juan PabloAngarita Coba, Luis Angel2024-07-23T14:50:04Z2024-07-23T14:50:04Z2024-07-19https://hdl.handle.net/1992/74649instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/En el entorno empresarial actual, la rotación de empleados se ha convertido en un desafío significativo para las organizaciones, afectando tanto la estabilidad operativa como la eficiencia económica. La alta rotación de personal no solo incrementa los costos de reclutamiento y capacitación, sino que también impacta negativamente en la moral y productividad de los empleados restantes. A pesar de las diversas estrategias implementadas por las empresas en el ámbito colombiano para mitigar este fenómeno, la comprensión completa de las variables que influyen en la decisión de los empleados de dejar la organización sigue siendo limitada, ya que abarca una gran cantidad de ámbitos que van más allá de la parte personal del trabajador y lo profesional en cada caso. Esta investigación busca presentar una primera aproximación hacia los factores o variables más relevantes que afectan la probabilidad de rotación de empleados. Esto se realiza a través de un enfoque metodológico que combina una revisión exhaustiva de la literatura académica y la realización de un grupo focal con tres diferentes expertos en los ámbitos relacionados con los recursos humanos y el manejo de personal en diversos sectores. El objetivo es conseguir un acercamiento a la realidad de esta situación en Colombia, contrastando los hallazgos con el contexto puntual de cada caso y abriendo la posibilidad de evaluar diferentes estrategias de retención que ataquen la problemática de la alta rotación.Pregrado78 páginasapplication/pdfspaUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónAttribution-NonCommercial 4.0 Internationalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Identificación y análisis de las variables externas e internas que influyen en la estimación de la probabilidad de rotación de empleadosTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPRotación de empleadosSatisfacción laboralCultura organizacionalRecursos humanosAnálisis predictivoAnálisis estadísticoIngenieríaGarg, N., Mahipalan, M., & Sharma, N. (2023). Does workplace toxicity influence turnover intentions among Indian healthcare employees? Investigating the moderating role of gratitude. Journal Of Health Organization And Management, 37(2), 250-272. https://doi.org/10.1108/jhom-08-2022-0233Battineni, G., Sagaro, G. G., Chinatalapudi, N., & Amenta, F. (2020). Applications of machine learning predictive models in the chronic disease diagnosis. In Journal of Personalized Medicine (Vol. 10, Issue 2). MDPI AG. https://doi.org/10.3390/jpm10020021Lin, C. Y., & Huang, C. K. (2020). Employee turnover intentions and job performance from a planned change: the effects of an organizational learning culture and job satisfaction. International Journal of Manpower, 42(3), 409–423. https://doi.org/10.1108/IJM-08-2018-0281Porkodi, S., Srihari, S., & Vijayakumar, N. (2022). Talent management by predicting employee attrition using enhanced weighted forest optimization algorithm with improved random forest classifier. International Journal of Advanced Technology and Engineering Exploration, 9(90), 563–582. https://doi.org/10.19101/IJATEE.2021.875340Naz, K., Siddiqui, I. F., Koo, J., Khan, M. A., & Qureshi, N. M. F. (2022). Predictive Modeling of Employee Churn Analysis for IoT-Enabled Software Industry. Applied Sciences (Switzerland), 12(20). https://doi.org/10.3390/app122010495Fallucchi, F., Coladangelo, M., Giuliano, R., & de Luca, E. W. (2020). Predicting employee attrition using machine learning techniques. Computers, 9(4), 1–17. https://doi.org/10.3390/computers9040086Srivastava, P. R., & Eachempati, P. (2021). Intelligent Employee Retention System for Attrition Rate Analysis and Churn Prediction: An Ensemble Machine Learning and Multi- Criteria Decision-Making Approach. Journal of Global Information Management, 29(6). https://doi.org/10.4018/JGIM.20211101.oa23Alsaadi, E. M. T. A., Khlebus, S. F., & Alabaichi, A. (2022). Identification of human resource analytics using machine learning algorithms. Telkomnika (Telecommunication Computing Electronics and Control), 20(5), 1004–1015. https://doi.org/10.12928/TELKOMNIKA.v20i5.21818Yadav, S., Jain, A., & Singh, D. (2018). Early Prediction of Employee Attrition using Data Mining Techniques. Proceedings Of The 8th International Advance Computing Conference, IACC 2018. https://doi.org/10.1109/iadcc.2018.8692137Krishna, S., & Sidharth, S. (2023). AI-Powered Workforce Analytics: Maximizing Business and Employee Success through Predictive Attrition Modelling. International Journal of Performability Engineering, 19(3), 203–215. https://doi.org/10.23940/ijpe.23.03.p6.203215Krishna, S., & Sidharth, S. (2022). HR Analytics: Employee Attrition Analysis using Random Forest. International Journal of Performability Engineering, 18(4), 275–281. https://doi.org/10.23940/ijpe.22.04.p5.275281Park, J., Feng, Y., & Jeong, S. P. (2024). Developing an advanced prediction model for new employee turnover intention utilizing machine learning techniques. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-023-50593-4Yuan, S., Kroon, B., & Kramer, A. (2024). Building prediction models with grouped data: A case study on the prediction of turnover intention. Human Resource Management Journal, 34(1), 20–38. https://doi.org/10.1111/1748-8583.12396Wang, X., & Zhi, J. (2021). A machine learning-based analytical framework for employee turnover prediction. Journal of Management Analytics, 8(3), 351–370. https://doi.org/10.1080/23270012.2021.1961318Punnoose, R., & Xlri -Xavier, C. (2016). Prediction of Employee Turnover in Organizations using Machine Learning Algorithms A case for Extreme Gradient Boosting. In IJARAI) International Journal of Advanced Research in Artificial Intelligence (Vol. 5, Issue 9). www.ijarai.thesai.orgVasa, J., & Masrani, K. (2019). Foreseeing employee attritions using diverse data mining strategies. International Journal of Recent Technology and Engineering, 8(3), 620–626. https://doi.org/10.35940/ijrte.B2406.098319Ghazi, A. H., Elsayed, S. I., & Khedr, A. E. (2021). A Proposed Model for Predicting Employee Turnover of Information Technology Specialists Using Data Mining Techniques. International Journal Of Electrical And Computer Engineering Systems, 12(2), 113-121. https://doi.org/10.32985/ijeces.12.2.6Hossen, M. A., Hossain, E., Ishwar, A. K. Z., & Siddika, F. (2021). Ensemble method based architecture using random forest importance to predict employee’s turn over. Journal of Physics: Conference Series, 1755(1). https://doi.org/10.1088/1742-6596/1755/1/012039Yahia, N. ben, Hlel, J., & Colomo-Palacios, R. (2021). From Big Data to Deep Data to Support People Analytics for Employee Attrition Prediction. IEEE Access, 9, 60447–60458. https://doi.org/10.1109/ACCESS.2021.3074559Chakraborty, R., Mridha, K., Shaw, R. N., & Ghosh, A. (2021, September 24). Study and Prediction Analysis of the Employee Turnover using Machine Learning Approaches. 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies, GUCON 2021. https://doi.org/10.1109/GUCON50781.2021.9573759Romão, S., Ribeiro, N., Gomes, D. R., & Singh, S. (2022). The Impact of Leaders’ Coaching Skills on Employees’ Happiness and Turnover Intention. Administrative Sciences, 12(3). https://doi.org/10.3390/admsci12030084He, Z., Chen, L., & Shafait, Z. (2023). How psychological contract violation impacts turnover intentions of knowledge workers? The moderating effect of job embeddedness. Heliyon, 9(3). https://doi.org/10.1016/j.heliyon.2023.e14409Almerri, H. S. H. (2023). Culture on Employee Retention: Moderating Role of Employee Engagement. Journal of System and Management Sciences, 13(4), 488–507. https://doi.org/10.33168/JSMS.2023.0429Alkandari, I., Alsaeed, F., Al-Kandari, A., Alsaber, A., Ullah, K., Hamza, K., & Alqatan, A. (2023). DETERMINANTS OF EMPLOYEES’ TURNOVER INTENTION. Journal of Governance and Regulation, 12(4), 29–37. https://doi.org/10.22495/jgrv12i4art3Liu, J., Long, Y., Fang, M., He, R., Wang, T., & Chen, G. (2018). Analyzing employee turnover based on job skills. ACM International Conference Proceeding Series, 16–21. https://doi.org/10.1145/3224207.3224209Yasin, R., Jan, G., Huseynova, A., & Atif, M. (2023). Inclusive leadership and turnover intention: the role of follower–leader goal congruence and organizational commitment. Management Decision, 61(3), 589–609. https://doi.org/10.1108/MD-07-2021-0925Zhao, Y., Hryniewicki, M. K., Cheng, F., Fu, B., & Zhu, X. (2018). Employee turnover prediction with machine learning: A reliable approach. Advances in Intelligent Systems and Computing, 869, 737–758. https://doi.org/10.1007/978-3-030-01057-7_56Yan, Z., Mansor, Z. D., Choo, W. C., & Abdullah, A. R. (2021). How to reduce employees’ turnover intention from the psychological perspective: A mediated moderation model. Psychology Research and Behavior Management, 14, 185–197. https://doi.org/10.2147/PRBM.S293839Tsen, M. K., Gu, M., Tan, C. M., & Goh, S. K. (2021). Does flexible work arrangements decrease or increase turnover intention? A comparison between the social exchange theory and border theory. International Journal of Sociology and Social Policy. https://doi.org/10.1108/IJSSP-08-2021-0196Gopalan, N., Beutell, N. J., & Alstete, J. W. (2023). Can trust in management help? Job satisfaction, healthy lifestyle, and turnover intentions. International Journal of Organization Theory and Behavior, 26(3), 185–202. https://doi.org/10.1108/IJOTB-09-2022-0180Liu, Z., & Wong, H. (2023). Linking authentic leadership and employee turnover intention: the influences of sense of calling and job satisfaction. Leadership and Organization Development Journal, 44(5), 585–608. https://doi.org/10.1108/LODJ-01-2023-0044Alam, M. M., Mohiuddin, K., Islam, M. K., Hassan, M., Hoque, M. A. U., & Allayear, S. M. (2019). A machine learning approach to analyze and reduce features to a significant number for employee’s turn over prediction model. Advances in Intelligent Systems and Computing, 857, 142–159. https://doi.org/10.1007/978-3-030-01177-2_11Iqbal, J., Asghar, A., & Asghar, M. Z. (2022). Effect of Despotic Leadership on Employee Turnover Intention: Mediating Toxic Workplace Environment and Cognitive Distraction in Academic Institutions. Behavioral Sciences, 12(5). https://doi.org/10.3390/bs12050125N Nguyen, D. T., Homolka, L., Duc Hoang, S., Chi, H., & D Nguyen, H. C. (2022). Employee Retention and the Moderating Role of Psychological Ownership in Retail. OPERATIONS AND SUPPLY CHAIN MANAGEMENT, 15(3), 313–327Gharbi, H., Aliane, N., al Falah, K. A., & Sobaih, A. E. E. (2022). You Really Affect Me: The Role of Social Influence in the Relationship between Procedural Justice and Turnover Intention. International Journal of Environmental Research and Public Health, 19(9). https://doi.org/10.3390/ijerph19095162Laulié, L., Pavez, I., Martínez Echeverría, J., Cea, P., & Briceño Jiménez, G. (2021). How leader contingent reward behavior impacts employee work engagement and turnover intention: the moderating role of age. Academia Revista Latinoamericana de Administracion, 34(4), 510–529. https://doi.org/10.1108/ARLA-12-2019-0241Boutmaghzoute, H., & Moustaghfir, K. (2021). Exploring the relationship between corporate social responsibility actions and employee retention: A human resource management perspective. Human Systems Management, 40(6), 789–801. https://doi.org/10.3233/HSM-211202Schaap, P., & Olckers, C. (2020). Relationships between employee retention factors and attitudinal antecedents of voluntary turnover: An extended structural equation modelling approach. SA Journal Of Human Resource Management, 18. https://doi.org/10.4102/sajhrm.v18i0.1358Farooq, H., Janjua, U. I., Madni, T. M., Waheed, A., Zareei, M., & Alanazi, F. (2022). Identification and Analysis of Factors Influencing Turnover Intention of Pakistan IT Professionals: An Empirical Study. IEEE Access, 10, 64234–64256. https://doi.org/10.1109/ACCESS.2022.3181753Kasdorf, R. L., & Kayaalp, A. (2022). Employee career development and turnover: a moderated mediation model. International Journal of Organizational Analysis, 30(2), 324–339. https://doi.org/10.1108/IJOA-09-2020-2416Kaur, R., & Randhawa, G. (2021). Supportive supervisor to curtail turnover intentions: do employee engagement and work–life balance play any role? Evidence-Based HRM, 9(3), 241–257. https://doi.org/10.1108/EBHRM-12-2019-0118Memon, M. A., Salleh, R., & Baharom, M. N. R. (2015). Linking person-job fit, person-organization fit, employee engagement and turnover intention: A three-step conceptual model. Asian Social Science, 11(2), 313–320. https://doi.org/10.5539/ass.v11n2p313Ahmad, R., Nawaz, M. R., Ishaq, M. I., Khan, M. M., & Ashraf, H. A. (2023). Social exchange theory: Systematic review and future directions. In Frontiers in Psychology (Vol. 13). Frontiers Media S.A. https://doi.org/10.3389/fpsyg.2022.1015921202012524201910393Publicationhttps://scholar.google.es/citations?user=sBulnrkAAAAJvirtual::19077-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001509364virtual::19077-1fa2de1d0-2850-4923-9c93-1f235736e5e4virtual::19077-19f6e12e0-098e-4548-ab81-75552e8385e7virtual::19078-1fa2de1d0-2850-4923-9c93-1f235736e5e4virtual::19077-19f6e12e0-098e-4548-ab81-75552e8385e7virtual::19078-1ORIGINALIdentificación y análisis de las variables externas e internas.pdfIdentificación y análisis de las variables externas e internas.pdfapplication/pdf1020247https://repositorio.uniandes.edu.co/bitstreams/a2065b6f-4442-410b-bb88-180e30b42774/downloadd276f1c07bea0d356c6ab6ebbf55e0b8MD51autorizacion tesis signed OA RF.pdfautorizacion tesis signed OA RF.pdfHIDEapplication/pdf486859https://repositorio.uniandes.edu.co/bitstreams/4004fa7e-b51c-46e4-94d9-076ae441c10e/download23bf3777e381cf6e0668453bb0019cebMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/eed67f0e-20e5-4e5e-85a0-50914a1b612a/downloadae9e573a68e7f92501b6913cc846c39fMD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.uniandes.edu.co/bitstreams/0720c139-b93d-45c7-a4c8-3b50a6e48dc3/download24013099e9e6abb1575dc6ce0855efd5MD55TEXTIdentificación y análisis de las variables externas e internas.pdf.txtIdentificación y análisis de las variables externas e internas.pdf.txtExtracted texttext/plain101939https://repositorio.uniandes.edu.co/bitstreams/5d3133c7-a75c-4b08-ab89-d0a7843f451b/download44c5bf737d59fbdaa20a6516a88cb8c0MD56autorizacion tesis signed OA RF.pdf.txtautorizacion tesis signed OA RF.pdf.txtExtracted texttext/plain2https://repositorio.uniandes.edu.co/bitstreams/0999a9a1-bce5-4c3c-b8f0-3b4b015d90e4/downloade1c06d85ae7b8b032bef47e42e4c08f9MD58THUMBNAILIdentificación y análisis de las variables externas e internas.pdf.jpgIdentificación y análisis de las variables externas e internas.pdf.jpgGenerated Thumbnailimage/jpeg6529https://repositorio.uniandes.edu.co/bitstreams/e2a3f2a7-12ca-4a96-b8cd-3c58f0126d51/download659cfc3661dfe062fbf90df60cb5e753MD57autorizacion tesis signed OA RF.pdf.jpgautorizacion tesis signed OA RF.pdf.jpgGenerated Thumbnailimage/jpeg11278https://repositorio.uniandes.edu.co/bitstreams/be384883-def6-4ec9-8050-b9798d256458/download0555609708c4f24bdf003ba5ce892d65MD591992/74649oai:repositorio.uniandes.edu.co:1992/746492024-09-12 16:20:13.547http://creativecommons.org/licenses/by-nc/4.0/Attribution-NonCommercial 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K