Compressed sensing with an a priori distribution

Compressed sensing is a technique for recovering an unknown sparse signal from a number of random linear measurements. The number of measurements required for perfect recovery plays a key role and it exhibits a phase transition. If the number of measurements exceeds certain level related with the sp...

Full description

Autores:
Díaz Díaz, Mateo
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/13608
Acceso en línea:
http://hdl.handle.net/1992/13608
Palabra clave:
Procesamiento de señales - Modelos matemáticos
Matemáticas
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-sa/4.0/
id UNIANDES2_bab92fe629cdc76077d72506f57f1826
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/13608
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Junca Peláez, Mauricio Josévirtual::11881-1Díaz Díaz, Mateocb4ea9da-dca0-46d0-af20-d5a8bff3f28d500Velasco Gregory, Mauricio FernandoQuiroz Salazar, Adolfo JoséLotz, PatBogotá2018-09-28T10:45:27Z2018-09-28T10:45:27Z2016http://hdl.handle.net/1992/13608u728703.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Compressed sensing is a technique for recovering an unknown sparse signal from a number of random linear measurements. The number of measurements required for perfect recovery plays a key role and it exhibits a phase transition. If the number of measurements exceeds certain level related with the sparsity of the signal, exact recovery is obtained with high probability. If the number of measurements is below this level, exact recovery occurs with very small probability. In this work we are able to reduce this threshold by incorporating statistical information about the data we wish to recover. Our algorithm works by minimizing a suitably weighted 11-norm, where the weights are chosen so that the expected statistical dimension of the descent cones of a weighted cross-polytope is minimized. We also provide Monte Carlo algorithms for computing intrinsic volumes of these descent cones and estimating the failure probability of our methodsMagíster en MatemáticasMaestría57 hojasapplication/pdfspaUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaCompressed sensing with an a priori distributionTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMProcesamiento de señales - Modelos matemáticosMatemáticasPublicationhttps://scholar.google.es/citations?user=CoIlxH0AAAAJvirtual::11881-10000-0002-5541-0758virtual::11881-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000155861virtual::11881-11e5c3dc6-4d9c-406b-9f99-5c91523b7e49virtual::11881-11e5c3dc6-4d9c-406b-9f99-5c91523b7e49virtual::11881-1ORIGINALu728703.pdfapplication/pdf5052518https://repositorio.uniandes.edu.co/bitstreams/c5f80514-4059-4bc7-a112-7e1e9c22b2a9/downloadac46c6c3aeed301535fb3fea89e23d4dMD51TEXTu728703.pdf.txtu728703.pdf.txtExtracted texttext/plain97927https://repositorio.uniandes.edu.co/bitstreams/be334555-984d-4a67-9403-549a41f397b8/downloade05853a6d08a5c20360155ba3e8e83e0MD54THUMBNAILu728703.pdf.jpgu728703.pdf.jpgIM Thumbnailimage/jpeg6883https://repositorio.uniandes.edu.co/bitstreams/f889afca-b9a7-410e-8ec7-ba78667bf6b0/downloadec4a5bd3dc861b2910f65921c4186969MD551992/13608oai:repositorio.uniandes.edu.co:1992/136082024-03-13 14:32:35.56http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co
dc.title.es_CO.fl_str_mv Compressed sensing with an a priori distribution
title Compressed sensing with an a priori distribution
spellingShingle Compressed sensing with an a priori distribution
Procesamiento de señales - Modelos matemáticos
Matemáticas
title_short Compressed sensing with an a priori distribution
title_full Compressed sensing with an a priori distribution
title_fullStr Compressed sensing with an a priori distribution
title_full_unstemmed Compressed sensing with an a priori distribution
title_sort Compressed sensing with an a priori distribution
dc.creator.fl_str_mv Díaz Díaz, Mateo
dc.contributor.advisor.none.fl_str_mv Junca Peláez, Mauricio José
dc.contributor.author.none.fl_str_mv Díaz Díaz, Mateo
dc.contributor.jury.none.fl_str_mv Velasco Gregory, Mauricio Fernando
Quiroz Salazar, Adolfo José
Lotz, Pat
dc.subject.keyword.es_CO.fl_str_mv Procesamiento de señales - Modelos matemáticos
topic Procesamiento de señales - Modelos matemáticos
Matemáticas
dc.subject.themes.none.fl_str_mv Matemáticas
description Compressed sensing is a technique for recovering an unknown sparse signal from a number of random linear measurements. The number of measurements required for perfect recovery plays a key role and it exhibits a phase transition. If the number of measurements exceeds certain level related with the sparsity of the signal, exact recovery is obtained with high probability. If the number of measurements is below this level, exact recovery occurs with very small probability. In this work we are able to reduce this threshold by incorporating statistical information about the data we wish to recover. Our algorithm works by minimizing a suitably weighted 11-norm, where the weights are chosen so that the expected statistical dimension of the descent cones of a weighted cross-polytope is minimized. We also provide Monte Carlo algorithms for computing intrinsic volumes of these descent cones and estimating the failure probability of our methods
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2018-09-28T10:45:27Z
dc.date.available.none.fl_str_mv 2018-09-28T10:45:27Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/13608
dc.identifier.pdf.none.fl_str_mv u728703.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/13608
identifier_str_mv u728703.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 57 hojas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.coverage.spatial.es_CO.fl_str_mv Bogotá
dc.publisher.none.fl_str_mv Uniandes
dc.publisher.program.es_CO.fl_str_mv Maestría en Matemáticas
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ciencias
dc.publisher.department.es_CO.fl_str_mv Departamento de Matemáticas
publisher.none.fl_str_mv Uniandes
dc.source.es_CO.fl_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
instname_str Universidad de los Andes
institution Universidad de los Andes
reponame_str Repositorio Institucional Séneca
collection Repositorio Institucional Séneca
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/c5f80514-4059-4bc7-a112-7e1e9c22b2a9/download
https://repositorio.uniandes.edu.co/bitstreams/be334555-984d-4a67-9403-549a41f397b8/download
https://repositorio.uniandes.edu.co/bitstreams/f889afca-b9a7-410e-8ec7-ba78667bf6b0/download
bitstream.checksum.fl_str_mv ac46c6c3aeed301535fb3fea89e23d4d
e05853a6d08a5c20360155ba3e8e83e0
ec4a5bd3dc861b2910f65921c4186969
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133986052341760