Compressed sensing with an a priori distribution
Compressed sensing is a technique for recovering an unknown sparse signal from a number of random linear measurements. The number of measurements required for perfect recovery plays a key role and it exhibits a phase transition. If the number of measurements exceeds certain level related with the sp...
- Autores:
-
Díaz Díaz, Mateo
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/13608
- Acceso en línea:
- http://hdl.handle.net/1992/13608
- Palabra clave:
- Procesamiento de señales - Modelos matemáticos
Matemáticas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-sa/4.0/
id |
UNIANDES2_bab92fe629cdc76077d72506f57f1826 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/13608 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.http://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Junca Peláez, Mauricio Josévirtual::11881-1Díaz Díaz, Mateocb4ea9da-dca0-46d0-af20-d5a8bff3f28d500Velasco Gregory, Mauricio FernandoQuiroz Salazar, Adolfo JoséLotz, PatBogotá2018-09-28T10:45:27Z2018-09-28T10:45:27Z2016http://hdl.handle.net/1992/13608u728703.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Compressed sensing is a technique for recovering an unknown sparse signal from a number of random linear measurements. The number of measurements required for perfect recovery plays a key role and it exhibits a phase transition. If the number of measurements exceeds certain level related with the sparsity of the signal, exact recovery is obtained with high probability. If the number of measurements is below this level, exact recovery occurs with very small probability. In this work we are able to reduce this threshold by incorporating statistical information about the data we wish to recover. Our algorithm works by minimizing a suitably weighted 11-norm, where the weights are chosen so that the expected statistical dimension of the descent cones of a weighted cross-polytope is minimized. We also provide Monte Carlo algorithms for computing intrinsic volumes of these descent cones and estimating the failure probability of our methodsMagíster en MatemáticasMaestría57 hojasapplication/pdfspaUniandesMaestría en MatemáticasFacultad de CienciasDepartamento de Matemáticasinstname:Universidad de los Andesreponame:Repositorio Institucional SénecaCompressed sensing with an a priori distributionTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesishttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMProcesamiento de señales - Modelos matemáticosMatemáticasPublicationhttps://scholar.google.es/citations?user=CoIlxH0AAAAJvirtual::11881-10000-0002-5541-0758virtual::11881-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000155861virtual::11881-11e5c3dc6-4d9c-406b-9f99-5c91523b7e49virtual::11881-11e5c3dc6-4d9c-406b-9f99-5c91523b7e49virtual::11881-1ORIGINALu728703.pdfapplication/pdf5052518https://repositorio.uniandes.edu.co/bitstreams/c5f80514-4059-4bc7-a112-7e1e9c22b2a9/downloadac46c6c3aeed301535fb3fea89e23d4dMD51TEXTu728703.pdf.txtu728703.pdf.txtExtracted texttext/plain97927https://repositorio.uniandes.edu.co/bitstreams/be334555-984d-4a67-9403-549a41f397b8/downloade05853a6d08a5c20360155ba3e8e83e0MD54THUMBNAILu728703.pdf.jpgu728703.pdf.jpgIM Thumbnailimage/jpeg6883https://repositorio.uniandes.edu.co/bitstreams/f889afca-b9a7-410e-8ec7-ba78667bf6b0/downloadec4a5bd3dc861b2910f65921c4186969MD551992/13608oai:repositorio.uniandes.edu.co:1992/136082024-03-13 14:32:35.56http://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |
dc.title.es_CO.fl_str_mv |
Compressed sensing with an a priori distribution |
title |
Compressed sensing with an a priori distribution |
spellingShingle |
Compressed sensing with an a priori distribution Procesamiento de señales - Modelos matemáticos Matemáticas |
title_short |
Compressed sensing with an a priori distribution |
title_full |
Compressed sensing with an a priori distribution |
title_fullStr |
Compressed sensing with an a priori distribution |
title_full_unstemmed |
Compressed sensing with an a priori distribution |
title_sort |
Compressed sensing with an a priori distribution |
dc.creator.fl_str_mv |
Díaz Díaz, Mateo |
dc.contributor.advisor.none.fl_str_mv |
Junca Peláez, Mauricio José |
dc.contributor.author.none.fl_str_mv |
Díaz Díaz, Mateo |
dc.contributor.jury.none.fl_str_mv |
Velasco Gregory, Mauricio Fernando Quiroz Salazar, Adolfo José Lotz, Pat |
dc.subject.keyword.es_CO.fl_str_mv |
Procesamiento de señales - Modelos matemáticos |
topic |
Procesamiento de señales - Modelos matemáticos Matemáticas |
dc.subject.themes.none.fl_str_mv |
Matemáticas |
description |
Compressed sensing is a technique for recovering an unknown sparse signal from a number of random linear measurements. The number of measurements required for perfect recovery plays a key role and it exhibits a phase transition. If the number of measurements exceeds certain level related with the sparsity of the signal, exact recovery is obtained with high probability. If the number of measurements is below this level, exact recovery occurs with very small probability. In this work we are able to reduce this threshold by incorporating statistical information about the data we wish to recover. Our algorithm works by minimizing a suitably weighted 11-norm, where the weights are chosen so that the expected statistical dimension of the descent cones of a weighted cross-polytope is minimized. We also provide Monte Carlo algorithms for computing intrinsic volumes of these descent cones and estimating the failure probability of our methods |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2018-09-28T10:45:27Z |
dc.date.available.none.fl_str_mv |
2018-09-28T10:45:27Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/13608 |
dc.identifier.pdf.none.fl_str_mv |
u728703.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/13608 |
identifier_str_mv |
u728703.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.es_CO.fl_str_mv |
spa |
language |
spa |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.es_CO.fl_str_mv |
57 hojas |
dc.format.mimetype.es_CO.fl_str_mv |
application/pdf |
dc.coverage.spatial.es_CO.fl_str_mv |
Bogotá |
dc.publisher.none.fl_str_mv |
Uniandes |
dc.publisher.program.es_CO.fl_str_mv |
Maestría en Matemáticas |
dc.publisher.faculty.es_CO.fl_str_mv |
Facultad de Ciencias |
dc.publisher.department.es_CO.fl_str_mv |
Departamento de Matemáticas |
publisher.none.fl_str_mv |
Uniandes |
dc.source.es_CO.fl_str_mv |
instname:Universidad de los Andes reponame:Repositorio Institucional Séneca |
instname_str |
Universidad de los Andes |
institution |
Universidad de los Andes |
reponame_str |
Repositorio Institucional Séneca |
collection |
Repositorio Institucional Séneca |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/c5f80514-4059-4bc7-a112-7e1e9c22b2a9/download https://repositorio.uniandes.edu.co/bitstreams/be334555-984d-4a67-9403-549a41f397b8/download https://repositorio.uniandes.edu.co/bitstreams/f889afca-b9a7-410e-8ec7-ba78667bf6b0/download |
bitstream.checksum.fl_str_mv |
ac46c6c3aeed301535fb3fea89e23d4d e05853a6d08a5c20360155ba3e8e83e0 ec4a5bd3dc861b2910f65921c4186969 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812133986052341760 |