Detección de anomalías físicas en redes IoT empleando técnicas de machine learning

El propósito de este trabajo era generar un conjunto de datos que permitiera entrenar un modelo de machine learning basado en el algoritmo KNN para poder detectar anomalías físicas en una red IoT. El modelo generado permitió clasificar correctamente los paquetes con anomalías físicas con tiempos de...

Full description

Autores:
Plata Ayala, Néstor Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/63992
Acceso en línea:
http://hdl.handle.net/1992/63992
Palabra clave:
IoT
Red de sensores
Anomalías físicas
KNN
Machine Learning
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UNIANDES2_a376ad0871a8ccafde65fbff4b9495fd
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/63992
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.none.fl_str_mv Detección de anomalías físicas en redes IoT empleando técnicas de machine learning
title Detección de anomalías físicas en redes IoT empleando técnicas de machine learning
spellingShingle Detección de anomalías físicas en redes IoT empleando técnicas de machine learning
IoT
Red de sensores
Anomalías físicas
KNN
Machine Learning
Ingeniería
title_short Detección de anomalías físicas en redes IoT empleando técnicas de machine learning
title_full Detección de anomalías físicas en redes IoT empleando técnicas de machine learning
title_fullStr Detección de anomalías físicas en redes IoT empleando técnicas de machine learning
title_full_unstemmed Detección de anomalías físicas en redes IoT empleando técnicas de machine learning
title_sort Detección de anomalías físicas en redes IoT empleando técnicas de machine learning
dc.creator.fl_str_mv Plata Ayala, Néstor Andrés
dc.contributor.advisor.none.fl_str_mv Montoya Orozco, Germán Adolfo
Lozano Garzon, Carlos Andres
dc.contributor.author.none.fl_str_mv Plata Ayala, Néstor Andrés
dc.contributor.researchgroup.es_CO.fl_str_mv COMIT
dc.subject.keyword.none.fl_str_mv IoT
Red de sensores
Anomalías físicas
KNN
Machine Learning
topic IoT
Red de sensores
Anomalías físicas
KNN
Machine Learning
Ingeniería
dc.subject.themes.es_CO.fl_str_mv Ingeniería
description El propósito de este trabajo era generar un conjunto de datos que permitiera entrenar un modelo de machine learning basado en el algoritmo KNN para poder detectar anomalías físicas en una red IoT. El modelo generado permitió clasificar correctamente los paquetes con anomalías físicas con tiempos de ejecución cortos.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-01-19T14:28:02Z
dc.date.available.none.fl_str_mv 2023-01-19T14:28:02Z
dc.date.issued.none.fl_str_mv 2023-01-18
dc.type.es_CO.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.es_CO.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/63992
dc.identifier.instname.es_CO.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.es_CO.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.es_CO.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/63992
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.es_CO.fl_str_mv spa
language spa
dc.relation.references.es_CO.fl_str_mv [1] D. ElMenshawx, y W. Helmy, "(PDF) Detection techniques of data anomalies in loT: literature survey", http://www.laeme.com/IJCIET/index.asp 794 editor@iaeme.com International Journal of Civil Engineering and Technology (ICIET), vol. 9, no 12, pp. 794-807, dic. 2018, Accedido: ago. 27, 2022. [En línea]. Available: https://www.researchgate.net/publication/330192913_Detection_techniques_of_data_anomal les_in_loT_A_literature_survey
[2] A. Gaddam, T. Wilkin, M. Angelova, and J. Gaddam, "Detecting Sensor Faults, Anomalies and Outliers inthe Internet of Things: A Survey on theChallenees and Solutions," Electronics (Basel), vol. 9, no. 511, pp. 2-15, Jan. 2020, dol; 10.3390/electronics9030511.
[3] N. Yousefnezhad, A. Malhi, and K. Främline, "Security in product lifecycle of loT devices: A survey," Journal of Network and Computer Applications, vol. 171, pp. 102-779, Dec. 2020, dpi: 10.101/1.JNCA.2020.102779.
[4] K. A. Omar, A. D. Malik, A. Jamil, and H. M. Gheni, "Faulty sensor detection using multi- variate sensors in internet of things (loTs)," Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 3, pp. 1391-1399, Jun. 2020, dei: 10.11591/WEECS.V18.13.PP1391-1399. M. Lot, S. Belekar, and P. Redekar, "Sensor Fault Detection in loT System Using Machine Learning," International Research Journal of Engineering and Technology, vol. 09, no. 07, pp. 2576-2579, Aug. 2022, Accessed: Aug. 28, 2022. [Online]. Available: http://www.irjet.net/
[5] A. Makhshari and A. Mesbah, "IoT Bugs and Development Challenges," 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 2021, pp. 460-472, doi: 10.1109/ICSE43902.2021.00051.
[6] Oracle.com. 2022. What is the Internet of Things (IoT)?. [online] Available at: <https://www.oracle.com/internet-of-things/what-is-iot/> [Accessed 26 September 2022].
[7] Till Johnson, J., 2022. 6 IoT Architecture Layers and Components Explained. [online] IoT Agenda. Available at: <https://www.techtarget.com/iotagenda/tip/A-comprehensive-view-of-the-4-IoT-architecture-layers> [Accessed 26 September 2022].
[8] Education, I., 2022. What is Machine Learning?. [online] Ibm.com. Available at: <https://www.ibm.com/cloud/learn/machine-learning> [Accessed 26 September 2022].
[9] Tesca Global Blog. 2022. What Is Wireless Sensor Network, And Types Of WSN?. [online] Available at: <https://www.tescaglobal.com/blog/what-is-wireless-sensor-network-and-types-of-wsn/> [Accessed 26 September 2022].
[10] Enjoyalgorithms.com. 2022. Publisher-Subscriber (Pub-Sub) Design Pattern. [online] Available at: <https://www.enjoyalgorithms.com/blog/publisher-subscriber-pattern> [Accessed 26 September 2022].
[11] Ibm.com. 2022. What is the k-nearest neighbors algorithm? | IBM. [online] Available at: <https://www.ibm.com/topics/knn> [Accessed 26 September 2022].
[12] 2022. [online] Available at: <https://www.datacamp.com/tutorial/k-nearest-neighbor-classification-scikit-learn> [Accessed 26 September 2022].
[13] Bajaj, A., 2022. Performance Metrics in Machine Learning [Complete Guide] - neptune.ai. [online] neptune.ai. Available at: <https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide> [Accessed 26 September 2022].
[14]Yick, J., Mukherjee, B. and Ghosal, D., 2008. Wireless sensor network survey. [online] Available at: <https://www.sciencedirect.com/science/article/pii/S1389128608001254> [Accessed 12 September 2022].
[15]Ying, X. (2019) "An overview of overfitting and its solutions," Journal of Physics: Conference Series, 1168, p. 022022. Available at: https://doi.org/10.1088/1742-6596/1168/2/022022.
16]Docs.sunfounder.com. 2022. Lessons : SunFounder SunFounder_SensorKit_for_RPi2 documentation. [online] Available at: <https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/lessons.html> [Accessed 12 September 2022].
[17]D. Soni A. Makwana, "A SURVEY ON MQTT: A PROTOCOL OF INTERNET OF THINGS(IOT)", 04 2017.
[18] ¿Qué es el coeficiente de correlación de pearson? QuestionPro, 09-Nov-2020. [Online]. Available: https://www.questionpro.com/blog/es/coeficiente-de-correlacion-de-pearson/. [Accessed: 26-Oct-2022].
[19] Nyuytiymbiy, K. (2020) Parameters, hyperparameters, machine learning | towards data science, Towards Data Science. Available at: https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac [Accessed: October 31, 2022].
[20] Terra, J. (2022) What is a ROC curve, and how do you use it in performance modeling?: Simplilearn, Simplilearn.com. Simplilearn. Available at: https://www.simplilearn.com/what-is-a-roc-curve-and-how-to-use-it-in-performance-modeling-article (Accessed: November 23, 2022).
dc.rights.license.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.es_CO.fl_str_mv 41 paginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.es_CO.fl_str_mv Universidad de los Andes
dc.publisher.program.es_CO.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.es_CO.fl_str_mv Facultad de Ingeniería
dc.publisher.department.es_CO.fl_str_mv Departamento de Ingeniería Sistemas y Computación
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/331f301f-1d62-43c9-95c4-7319a84dabac/download
https://repositorio.uniandes.edu.co/bitstreams/ca5ac9cc-1f74-480d-9bb8-3e6408c123ba/download
https://repositorio.uniandes.edu.co/bitstreams/26b86388-5c13-46ca-ac67-a4ebbc29f78b/download
https://repositorio.uniandes.edu.co/bitstreams/97f0f1b2-8880-442a-84c2-f949ad1c9af1/download
https://repositorio.uniandes.edu.co/bitstreams/6e06d4c2-4d34-4184-9a7e-1000148aaf46/download
https://repositorio.uniandes.edu.co/bitstreams/b7f4adb4-ed6b-467e-b3e7-1ae42e556cdb/download
https://repositorio.uniandes.edu.co/bitstreams/35e3d6cb-dfd4-45a5-b1f8-dca06980fa05/download
bitstream.checksum.fl_str_mv a8f3fa94f609e390e5ff735703dad598
e691d0fe020c0930cca79d6b1e4c2ea1
4dc2721714b8ecc62a24368ab1ce782d
9de3aae51868bbf15271f1680ec44a36
5aa5c691a1ffe97abd12c2966efcb8d6
29ca4d43cc42b1db8031d04156d39274
902a7f15f615de2d4a887791d1925201
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133814044983296
spelling Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montoya Orozco, Germán Adolfo6215ccc6-8a26-4e94-8ce5-66f0c0dac3a2600Lozano Garzon, Carlos Andresvirtual::1396-1Plata Ayala, Néstor Andrés3110203a-5541-4aac-aefd-3b4ab1259967600COMIT2023-01-19T14:28:02Z2023-01-19T14:28:02Z2023-01-18http://hdl.handle.net/1992/63992instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/El propósito de este trabajo era generar un conjunto de datos que permitiera entrenar un modelo de machine learning basado en el algoritmo KNN para poder detectar anomalías físicas en una red IoT. El modelo generado permitió clasificar correctamente los paquetes con anomalías físicas con tiempos de ejecución cortos.En los últimos años ha cobrado popularidad el uso de redes IoT en diferentes contextos de la cotidianidad. Los sensores que recopilan información, como base de este tipo de redes hacen que estas sean vulnerables a posibles fallas a nivel físico que afectan la veracidad de los datos capturados. En este trabajo se realiza el despliegue de una red de sensores para la posterior captura de información de tráfico normal y tráfico con anomalías. La información capturada fue usada para entrenar y probar un modelo de machine learning con el algoritmo KNN que permite identificar anomalías físicas en una red. El modelo presentó un desempeño positivo, clasificando correctamente el 99.53% de los paquetes analizados.Ingeniero de Sistemas y ComputaciónPregrado41 paginasapplication/pdfspaUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería Sistemas y ComputaciónDetección de anomalías físicas en redes IoT empleando técnicas de machine learningTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPIoTRed de sensoresAnomalías físicasKNNMachine LearningIngeniería[1] D. ElMenshawx, y W. Helmy, "(PDF) Detection techniques of data anomalies in loT: literature survey", http://www.laeme.com/IJCIET/index.asp 794 editor@iaeme.com International Journal of Civil Engineering and Technology (ICIET), vol. 9, no 12, pp. 794-807, dic. 2018, Accedido: ago. 27, 2022. [En línea]. Available: https://www.researchgate.net/publication/330192913_Detection_techniques_of_data_anomal les_in_loT_A_literature_survey[2] A. Gaddam, T. Wilkin, M. Angelova, and J. Gaddam, "Detecting Sensor Faults, Anomalies and Outliers inthe Internet of Things: A Survey on theChallenees and Solutions," Electronics (Basel), vol. 9, no. 511, pp. 2-15, Jan. 2020, dol; 10.3390/electronics9030511.[3] N. Yousefnezhad, A. Malhi, and K. Främline, "Security in product lifecycle of loT devices: A survey," Journal of Network and Computer Applications, vol. 171, pp. 102-779, Dec. 2020, dpi: 10.101/1.JNCA.2020.102779.[4] K. A. Omar, A. D. Malik, A. Jamil, and H. M. Gheni, "Faulty sensor detection using multi- variate sensors in internet of things (loTs)," Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 3, pp. 1391-1399, Jun. 2020, dei: 10.11591/WEECS.V18.13.PP1391-1399. M. Lot, S. Belekar, and P. Redekar, "Sensor Fault Detection in loT System Using Machine Learning," International Research Journal of Engineering and Technology, vol. 09, no. 07, pp. 2576-2579, Aug. 2022, Accessed: Aug. 28, 2022. [Online]. Available: http://www.irjet.net/[5] A. Makhshari and A. Mesbah, "IoT Bugs and Development Challenges," 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), 2021, pp. 460-472, doi: 10.1109/ICSE43902.2021.00051.[6] Oracle.com. 2022. What is the Internet of Things (IoT)?. [online] Available at: <https://www.oracle.com/internet-of-things/what-is-iot/> [Accessed 26 September 2022].[7] Till Johnson, J., 2022. 6 IoT Architecture Layers and Components Explained. [online] IoT Agenda. Available at: <https://www.techtarget.com/iotagenda/tip/A-comprehensive-view-of-the-4-IoT-architecture-layers> [Accessed 26 September 2022].[8] Education, I., 2022. What is Machine Learning?. [online] Ibm.com. Available at: <https://www.ibm.com/cloud/learn/machine-learning> [Accessed 26 September 2022].[9] Tesca Global Blog. 2022. What Is Wireless Sensor Network, And Types Of WSN?. [online] Available at: <https://www.tescaglobal.com/blog/what-is-wireless-sensor-network-and-types-of-wsn/> [Accessed 26 September 2022].[10] Enjoyalgorithms.com. 2022. Publisher-Subscriber (Pub-Sub) Design Pattern. [online] Available at: <https://www.enjoyalgorithms.com/blog/publisher-subscriber-pattern> [Accessed 26 September 2022].[11] Ibm.com. 2022. What is the k-nearest neighbors algorithm? | IBM. [online] Available at: <https://www.ibm.com/topics/knn> [Accessed 26 September 2022].[12] 2022. [online] Available at: <https://www.datacamp.com/tutorial/k-nearest-neighbor-classification-scikit-learn> [Accessed 26 September 2022].[13] Bajaj, A., 2022. Performance Metrics in Machine Learning [Complete Guide] - neptune.ai. [online] neptune.ai. Available at: <https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide> [Accessed 26 September 2022].[14]Yick, J., Mukherjee, B. and Ghosal, D., 2008. Wireless sensor network survey. [online] Available at: <https://www.sciencedirect.com/science/article/pii/S1389128608001254> [Accessed 12 September 2022].[15]Ying, X. (2019) "An overview of overfitting and its solutions," Journal of Physics: Conference Series, 1168, p. 022022. Available at: https://doi.org/10.1088/1742-6596/1168/2/022022.16]Docs.sunfounder.com. 2022. Lessons : SunFounder SunFounder_SensorKit_for_RPi2 documentation. [online] Available at: <https://docs.sunfounder.com/projects/sensorkit-v2-pi/en/latest/lessons.html> [Accessed 12 September 2022].[17]D. Soni A. Makwana, "A SURVEY ON MQTT: A PROTOCOL OF INTERNET OF THINGS(IOT)", 04 2017.[18] ¿Qué es el coeficiente de correlación de pearson? QuestionPro, 09-Nov-2020. [Online]. Available: https://www.questionpro.com/blog/es/coeficiente-de-correlacion-de-pearson/. [Accessed: 26-Oct-2022].[19] Nyuytiymbiy, K. (2020) Parameters, hyperparameters, machine learning | towards data science, Towards Data Science. Available at: https://towardsdatascience.com/parameters-and-hyperparameters-aa609601a9ac [Accessed: October 31, 2022].[20] Terra, J. (2022) What is a ROC curve, and how do you use it in performance modeling?: Simplilearn, Simplilearn.com. Simplilearn. Available at: https://www.simplilearn.com/what-is-a-roc-curve-and-how-to-use-it-in-performance-modeling-article (Accessed: November 23, 2022).201822937Publicationhttps://scholar.google.es/citations?user=WRJlR-UAAAAJvirtual::1396-10000-0003-2920-6320virtual::1396-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000219541virtual::1396-1144aa5a0-592f-47a4-995b-a440d00b1658virtual::1396-1144aa5a0-592f-47a4-995b-a440d00b1658virtual::1396-1ORIGINALDeteccio¿n de anomali¿as fi¿sicas en redes IoT empleando te¿cnicas de machine learning.pdfDeteccio¿n de anomali¿as fi¿sicas en redes IoT empleando te¿cnicas de machine learning.pdfTrabajo de gradoapplication/pdf1380595https://repositorio.uniandes.edu.co/bitstreams/331f301f-1d62-43c9-95c4-7319a84dabac/downloada8f3fa94f609e390e5ff735703dad598MD53Autorizacion Tesis Nestor PLata.pdfAutorizacion Tesis Nestor PLata.pdfHIDEapplication/pdf274367https://repositorio.uniandes.edu.co/bitstreams/ca5ac9cc-1f74-480d-9bb8-3e6408c123ba/downloade691d0fe020c0930cca79d6b1e4c2ea1MD52TEXTDeteccio¿n de anomali¿as fi¿sicas en redes IoT empleando te¿cnicas de machine learning.pdf.txtDeteccio¿n de anomali¿as fi¿sicas en redes IoT empleando te¿cnicas de machine learning.pdf.txtExtracted texttext/plain53241https://repositorio.uniandes.edu.co/bitstreams/26b86388-5c13-46ca-ac67-a4ebbc29f78b/download4dc2721714b8ecc62a24368ab1ce782dMD54Autorizacion Tesis Nestor PLata.pdf.txtAutorizacion Tesis Nestor PLata.pdf.txtExtracted texttext/plain1414https://repositorio.uniandes.edu.co/bitstreams/97f0f1b2-8880-442a-84c2-f949ad1c9af1/download9de3aae51868bbf15271f1680ec44a36MD56LICENSElicense.txtlicense.txttext/plain; charset=utf-81810https://repositorio.uniandes.edu.co/bitstreams/6e06d4c2-4d34-4184-9a7e-1000148aaf46/download5aa5c691a1ffe97abd12c2966efcb8d6MD51THUMBNAILDeteccio¿n de anomali¿as fi¿sicas en redes IoT empleando te¿cnicas de machine learning.pdf.jpgDeteccio¿n de anomali¿as fi¿sicas en redes IoT empleando te¿cnicas de machine learning.pdf.jpgIM Thumbnailimage/jpeg10091https://repositorio.uniandes.edu.co/bitstreams/b7f4adb4-ed6b-467e-b3e7-1ae42e556cdb/download29ca4d43cc42b1db8031d04156d39274MD55Autorizacion Tesis Nestor PLata.pdf.jpgAutorizacion Tesis Nestor PLata.pdf.jpgIM Thumbnailimage/jpeg18674https://repositorio.uniandes.edu.co/bitstreams/35e3d6cb-dfd4-45a5-b1f8-dca06980fa05/download902a7f15f615de2d4a887791d1925201MD571992/63992oai:repositorio.uniandes.edu.co:1992/639922024-03-13 11:57:12.113https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coWW8sIGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgdGVzaXMsIG1vbm9ncmFmw61hIG8gdHJhYmFqbyBkZSBncmFkbywgaGFnbyBlbnRyZWdhIGRlbCBlamVtcGxhciByZXNwZWN0aXZvIHkgZGUgc3VzIGFuZXhvcyBkZSBzZXIgZWwgY2FzbywgZW4gZm9ybWF0byBkaWdpdGFsIHkvbyBlbGVjdHLDs25pY28geSBhdXRvcml6byBhIGxhIFVuaXZlcnNpZGFkIGRlIGxvcyBBbmRlcyBwYXJhIHF1ZSByZWFsaWNlIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBTaXN0ZW1hIGRlIEJpYmxpb3RlY2FzIG8gZW4gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBvIGJhc2UgZGUgZGF0b3MgcHJvcGlvIG8gYWplbm8gYSBsYSBVbml2ZXJzaWRhZCB5IHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBMZXkgNDQgZGUgMTk5MywgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgRGVjcmV0byA0NjAgZGUgMTk5NSB5IGRlbcOhcyBub3JtYXMgZ2VuZXJhbGVzIHNvYnJlIGxhIG1hdGVyaWEsIHV0aWxpY2UgZW4gdG9kYXMgc3VzIGZvcm1hcywgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgdHJhbnNmb3JtYWNpw7NuIHkgZGlzdHJpYnVjacOzbiAoYWxxdWlsZXIsIHByw6lzdGFtbyBww7pibGljbyBlIGltcG9ydGFjacOzbikgcXVlIG1lIGNvcnJlc3BvbmRlbiBjb21vIGNyZWFkb3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50by4gIAoKCkxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgZW1pdGUgZW4gY2FsaWRhZCBkZSBhdXRvciBkZSBsYSBvYnJhIG9iamV0byBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHkgbm8gY29ycmVzcG9uZGUgYSBjZXNpw7NuIGRlIGRlcmVjaG9zLCBzaW5vIGEgbGEgYXV0b3JpemFjacOzbiBkZSB1c28gYWNhZMOpbWljbyBkZSBjb25mb3JtaWRhZCBjb24gbG8gYW50ZXJpb3JtZW50ZSBzZcOxYWxhZG8uIExhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gc2UgaGFjZSBleHRlbnNpdmEgbm8gc29sbyBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgbWF0ZXJpYWwsIHNpbm8gdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGVsZWN0csOzbmljbywgeSBlbiBnZW5lcmFsIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gCgoKRWwgYXV0b3IsIG1hbmlmaWVzdGEgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwgeSBsYSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcywgcG9yIGxvIHRhbnRvLCBsYSBvYnJhIGVzIGRlIHN1IGV4Y2x1c2l2YSBhdXRvcsOtYSB5IHRpZW5lIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAKCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAKCg==