Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques

This is a project which consisted on fault and anomaly detection for photovoltaic systems. It started with a study of models that could detect the outliers for data, then an electrical fault and anomaly labeling was necessary and finally, a classification of these labels was made in order to make co...

Full description

Autores:
Pardo Morales, Santiago Iván
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/73830
Acceso en línea:
https://hdl.handle.net/1992/73830
Palabra clave:
Machine learning
Photovoltaic system
Data analysis
Fault
Anomaly
Ingeniería
Rights
openAccess
License
Attribution 4.0 International
id UNIANDES2_97048eac2c5edf3e9cf5045d1b007599
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/73830
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques
dc.title.alternative.spa.fl_str_mv Detección y clasificación de fallas en un sistema fotovoltaico de una planta de 80 kW usando técnicas de aprendizaje automático
title Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques
spellingShingle Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques
Machine learning
Photovoltaic system
Data analysis
Fault
Anomaly
Ingeniería
title_short Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques
title_full Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques
title_fullStr Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques
title_full_unstemmed Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques
title_sort Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques
dc.creator.fl_str_mv Pardo Morales, Santiago Iván
dc.contributor.advisor.none.fl_str_mv Jiménez Estévez, Guillermo Andrés
Bressan, Michael
Giraldo Trujillo, Luis Felipe
dc.contributor.author.none.fl_str_mv Pardo Morales, Santiago Iván
dc.contributor.jury.none.fl_str_mv López Jiménez, Jorge Alfredo
dc.subject.keyword.eng.fl_str_mv Machine learning
topic Machine learning
Photovoltaic system
Data analysis
Fault
Anomaly
Ingeniería
dc.subject.keyword.none.fl_str_mv Photovoltaic system
Data analysis
Fault
Anomaly
dc.subject.themes.spa.fl_str_mv Ingeniería
description This is a project which consisted on fault and anomaly detection for photovoltaic systems. It started with a study of models that could detect the outliers for data, then an electrical fault and anomaly labeling was necessary and finally, a classification of these labels was made in order to make conclusions about the performance of the models.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-02-02T18:59:53Z
dc.date.available.none.fl_str_mv 2024-02-02T18:59:53Z
dc.date.issued.none.fl_str_mv 2024-01-12
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/73830
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/73830
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 54 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/1b561006-87bb-429c-b45f-3de433c91a0f/download
https://repositorio.uniandes.edu.co/bitstreams/a62823fc-96ff-4374-8977-8ee463fdca7f/download
https://repositorio.uniandes.edu.co/bitstreams/f31e8c6a-8c3b-4d6d-8ee8-a47c895a3087/download
https://repositorio.uniandes.edu.co/bitstreams/26d491ab-f02d-4ef0-bb73-b108d804bd7c/download
https://repositorio.uniandes.edu.co/bitstreams/53ddf229-a8df-4369-a73d-177a18dfbb2b/download
https://repositorio.uniandes.edu.co/bitstreams/dc27072a-cb1c-4e47-bc7b-8b8e52de8f6e/download
https://repositorio.uniandes.edu.co/bitstreams/16c095a2-1a6e-4ec8-8b11-a12770679328/download
https://repositorio.uniandes.edu.co/bitstreams/8ab88ac1-ec15-45b6-bd9e-a96f31f36346/download
bitstream.checksum.fl_str_mv ae9e573a68e7f92501b6913cc846c39f
772d20cff7c26928cb301a33dace5b54
5e6993fbe281fd9b8e0f61beeaaedbf6
0175ea4a2d4caec4bbcc37e300941108
129a264ee186b7aa688e27499b636a93
140e9f5affcf321f6e7cc76c99172aa6
4fec6647d1941fde89132ea6eef83742
7f444dd0a2c0f58b82ab95ef5e3bd604
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812133889112539136
spelling Jiménez Estévez, Guillermo AndrésBressan, MichaelGiraldo Trujillo, Luis FelipePardo Morales, Santiago IvánLópez Jiménez, Jorge Alfredo2024-02-02T18:59:53Z2024-02-02T18:59:53Z2024-01-12https://hdl.handle.net/1992/73830instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/This is a project which consisted on fault and anomaly detection for photovoltaic systems. It started with a study of models that could detect the outliers for data, then an electrical fault and anomaly labeling was necessary and finally, a classification of these labels was made in order to make conclusions about the performance of the models.Ingeniero ElectrónicoPregrado54 páginasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaAttribution 4.0 Internationalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniquesDetección y clasificación de fallas en un sistema fotovoltaico de una planta de 80 kW usando técnicas de aprendizaje automáticoTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPMachine learningPhotovoltaic systemData analysisFaultAnomalyIngeniería202013025PublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/1b561006-87bb-429c-b45f-3de433c91a0f/downloadae9e573a68e7f92501b6913cc846c39fMD51ORIGINALautorizacion tesis SP.pdfautorizacion tesis SP.pdfHIDEapplication/pdf396345https://repositorio.uniandes.edu.co/bitstreams/a62823fc-96ff-4374-8977-8ee463fdca7f/download772d20cff7c26928cb301a33dace5b54MD52Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques.pdfFault detection and classification in a 80kW photovoltaic system using Machine Learning techniques.pdfapplication/pdf3818214https://repositorio.uniandes.edu.co/bitstreams/f31e8c6a-8c3b-4d6d-8ee8-a47c895a3087/download5e6993fbe281fd9b8e0f61beeaaedbf6MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.uniandes.edu.co/bitstreams/26d491ab-f02d-4ef0-bb73-b108d804bd7c/download0175ea4a2d4caec4bbcc37e300941108MD54TEXTautorizacion tesis SP.pdf.txtautorizacion tesis SP.pdf.txtExtracted texttext/plain2060https://repositorio.uniandes.edu.co/bitstreams/53ddf229-a8df-4369-a73d-177a18dfbb2b/download129a264ee186b7aa688e27499b636a93MD55Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques.pdf.txtFault detection and classification in a 80kW photovoltaic system using Machine Learning techniques.pdf.txtExtracted texttext/plain99220https://repositorio.uniandes.edu.co/bitstreams/dc27072a-cb1c-4e47-bc7b-8b8e52de8f6e/download140e9f5affcf321f6e7cc76c99172aa6MD57THUMBNAILautorizacion tesis SP.pdf.jpgautorizacion tesis SP.pdf.jpgGenerated Thumbnailimage/jpeg11168https://repositorio.uniandes.edu.co/bitstreams/16c095a2-1a6e-4ec8-8b11-a12770679328/download4fec6647d1941fde89132ea6eef83742MD56Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques.pdf.jpgFault detection and classification in a 80kW photovoltaic system using Machine Learning techniques.pdf.jpgGenerated Thumbnailimage/jpeg6888https://repositorio.uniandes.edu.co/bitstreams/8ab88ac1-ec15-45b6-bd9e-a96f31f36346/download7f444dd0a2c0f58b82ab95ef5e3bd604MD581992/73830oai:repositorio.uniandes.edu.co:1992/738302024-02-16 14:49:34.558http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K