Fault detection and classification in a 80kW photovoltaic system using Machine Learning techniques
This is a project which consisted on fault and anomaly detection for photovoltaic systems. It started with a study of models that could detect the outliers for data, then an electrical fault and anomaly labeling was necessary and finally, a classification of these labels was made in order to make co...
- Autores:
-
Pardo Morales, Santiago Iván
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/73830
- Acceso en línea:
- https://hdl.handle.net/1992/73830
- Palabra clave:
- Machine learning
Photovoltaic system
Data analysis
Fault
Anomaly
Ingeniería
- Rights
- openAccess
- License
- Attribution 4.0 International