Machine learning based energy-efficient uav trajectory design for site-specific crop spraying

The use of unmanned aerial vehicles (UAVs) in agriculture is extending at a brisk rate due to their huge potential to address problems related to costs, time, productivity and climate change. Motivated by the necessity of leveraging technology to optimize agricultural practices, we propose a methodo...

Full description

Autores:
Acevedo Ramos, Jorge Alfredo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/51533
Acceso en línea:
http://hdl.handle.net/1992/51533
Palabra clave:
Riego
Drones
Aprendizaje automático (Inteligencia artificial)
Ingeniería
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_7ce40bb9328f0a0adc7f1ebe61cae547
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/51533
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Machine learning based energy-efficient uav trajectory design for site-specific crop spraying
title Machine learning based energy-efficient uav trajectory design for site-specific crop spraying
spellingShingle Machine learning based energy-efficient uav trajectory design for site-specific crop spraying
Riego
Drones
Aprendizaje automático (Inteligencia artificial)
Ingeniería
title_short Machine learning based energy-efficient uav trajectory design for site-specific crop spraying
title_full Machine learning based energy-efficient uav trajectory design for site-specific crop spraying
title_fullStr Machine learning based energy-efficient uav trajectory design for site-specific crop spraying
title_full_unstemmed Machine learning based energy-efficient uav trajectory design for site-specific crop spraying
title_sort Machine learning based energy-efficient uav trajectory design for site-specific crop spraying
dc.creator.fl_str_mv Acevedo Ramos, Jorge Alfredo
dc.contributor.advisor.none.fl_str_mv Medaglia González, Andrés L.
Giraldo Trujillo, Luis Felipe
dc.contributor.author.none.fl_str_mv Acevedo Ramos, Jorge Alfredo
dc.contributor.jury.none.fl_str_mv Jiménez Vargas, José Fernando
Solano Blanco, Alfaima Lucia
dc.subject.armarc.none.fl_str_mv Riego
Drones
Aprendizaje automático (Inteligencia artificial)
topic Riego
Drones
Aprendizaje automático (Inteligencia artificial)
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description The use of unmanned aerial vehicles (UAVs) in agriculture is extending at a brisk rate due to their huge potential to address problems related to costs, time, productivity and climate change. Motivated by the necessity of leveraging technology to optimize agricultural practices, we propose a methodology to determine an efficient trajectory to be followed by an UAV in order to apply pesticides, fertilizers or water to a crop. The main goal is to satisfy the specific resource requirements of the different areas of the crop, while minimizing energy consumption. A sample data generation method considering drone dynamics is presented and used to implement machine learning algorithms and build a black-box model to predict the energy that a UAV would consume by following a complete trajectory. Given this, a reformulation of the Travelling Salesman Problem (TSP) is solved to obtain the desired energy efficient trajectory for crop spraying. The effectiveness of the methodology has been tested for crop irrigation given a CWSI image of a vineyard. Simulations results shown that a trajectory to properly irrigate the crop while significantly reducing water, time and energy consumption can be obtained. Moreover, a neural network was trained to accurately predict energy consumption in just 0.06% of the run time that would require its estimation with a white-box model, thereby reducing the time needed to solve the TSP problem from a week to a few minutes. According to these results, the proposed methodology could be implemented to quickly obtain trajectories for any given crop, contributing to the reduction of resources spent during the spraying process.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-08-10T18:29:36Z
dc.date.available.none.fl_str_mv 2021-08-10T18:29:36Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/1992/51533
dc.identifier.pdf.none.fl_str_mv 22754.pdf
dc.identifier.instname.spa.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.spa.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url http://hdl.handle.net/1992/51533
identifier_str_mv 22754.pdf
instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.uri.*.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 24 hojas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería Eléctrica y Electrónica
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/c6ec72a9-c1ed-4202-9c22-d85348d84ce7/download
https://repositorio.uniandes.edu.co/bitstreams/de7dc8fb-5097-49f2-859c-3db28e470976/download
https://repositorio.uniandes.edu.co/bitstreams/4740d9e9-d3ae-46db-8bcd-4ff1b67a4c5f/download
bitstream.checksum.fl_str_mv 377a45c648422999eb47acf71fe3690a
c22b97e5537bf9e542709276b398c145
8193eb52012bbeb16cd6c6d0ca3e8417
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134037337145344
spelling Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Medaglia González, Andrés L.98d6c750-b61d-4190-9c16-2bc8d136a198500Giraldo Trujillo, Luis Felipevirtual::14965-1Acevedo Ramos, Jorge Alfredo3cd020ad-4aa8-400d-9d00-1c6b8d42aa2a400Jiménez Vargas, José FernandoSolano Blanco, Alfaima Lucia2021-08-10T18:29:36Z2021-08-10T18:29:36Z2020http://hdl.handle.net/1992/5153322754.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The use of unmanned aerial vehicles (UAVs) in agriculture is extending at a brisk rate due to their huge potential to address problems related to costs, time, productivity and climate change. Motivated by the necessity of leveraging technology to optimize agricultural practices, we propose a methodology to determine an efficient trajectory to be followed by an UAV in order to apply pesticides, fertilizers or water to a crop. The main goal is to satisfy the specific resource requirements of the different areas of the crop, while minimizing energy consumption. A sample data generation method considering drone dynamics is presented and used to implement machine learning algorithms and build a black-box model to predict the energy that a UAV would consume by following a complete trajectory. Given this, a reformulation of the Travelling Salesman Problem (TSP) is solved to obtain the desired energy efficient trajectory for crop spraying. The effectiveness of the methodology has been tested for crop irrigation given a CWSI image of a vineyard. Simulations results shown that a trajectory to properly irrigate the crop while significantly reducing water, time and energy consumption can be obtained. Moreover, a neural network was trained to accurately predict energy consumption in just 0.06% of the run time that would require its estimation with a white-box model, thereby reducing the time needed to solve the TSP problem from a week to a few minutes. According to these results, the proposed methodology could be implemented to quickly obtain trajectories for any given crop, contributing to the reduction of resources spent during the spraying process.Motivados por la necesidad de aprovechar la tecnología para optimizar prácticas tradicionales en agricultura, se propone una metodología para obtener de manera rápida y precisa una trayectoria eficiente para aplicar pesticidas, fertilizantes o agua sobre un cultivo mediante drones de aspersión. Estas trayectorias son determinadas mediante la solución de una reformulación del TSP, de modo que se atiendan las necesidades específicas de cada zona del cultivo y se minimice el consumo de energía del dron. Para ello, se parte de la hipótesis de que se puede modelar la relación entre la energía consumida, las dinámicas del dron y la trayectoria a seguir utilizando algortimos de Machine Learning, permitiendo solucionar el problema para cualquier imagen de interés que represente los requerimientos del cultivo. La efectividad de la metodología fue evaluada mediante la simulación de una tarea de irrigación para un viñedo, dada una imagen del índice de estrés hídrico (CWSI). Una red neuronal fue entrenada para predecir de manera precisa el consumo de energía en solo 0.06% del tiempo requerido para obtener el mismo resultado mediante la resolución de un modelo dinámico del dron. Buscando regar lo necesario y minimizar el consumo de energía, estimado a partir de la red neuronal, se obtuvo de manera rápida una trayectoria para irrigar de manera precisa el viñedo, con error medio menor al 10% y una reducción de energía, agua y tiempo significativa respecto a otras metodologías en la literatura. Sujeto a pruebas experimentales, la metodología propuesta constituye una primera aproximación al objetivo de mejorar la precisión en tareas de aspersión, contribuyendo a la eficiencia en el uso de recursos y al incremento de la productividad en el campo.Ingeniero ElectrónicoPregrado24 hojasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaMachine learning based energy-efficient uav trajectory design for site-specific crop sprayingTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPRiegoDronesAprendizaje automático (Inteligencia artificial)Ingeniería201620360Publicationhttps://scholar.google.es/citations?user=4TGvo8AAAAJvirtual::14965-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000802506virtual::14965-1eb386eec-3ec8-40c2-829d-ae8cbf0e384evirtual::14965-1eb386eec-3ec8-40c2-829d-ae8cbf0e384evirtual::14965-1THUMBNAIL22754.pdf.jpg22754.pdf.jpgIM Thumbnailimage/jpeg12172https://repositorio.uniandes.edu.co/bitstreams/c6ec72a9-c1ed-4202-9c22-d85348d84ce7/download377a45c648422999eb47acf71fe3690aMD55TEXT22754.pdf.txt22754.pdf.txtExtracted texttext/plain54615https://repositorio.uniandes.edu.co/bitstreams/de7dc8fb-5097-49f2-859c-3db28e470976/downloadc22b97e5537bf9e542709276b398c145MD54ORIGINAL22754.pdfapplication/pdf2577570https://repositorio.uniandes.edu.co/bitstreams/4740d9e9-d3ae-46db-8bcd-4ff1b67a4c5f/download8193eb52012bbeb16cd6c6d0ca3e8417MD511992/51533oai:repositorio.uniandes.edu.co:1992/515332024-03-13 15:20:11.301https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co