Machine learning based energy-efficient uav trajectory design for site-specific crop spraying
The use of unmanned aerial vehicles (UAVs) in agriculture is extending at a brisk rate due to their huge potential to address problems related to costs, time, productivity and climate change. Motivated by the necessity of leveraging technology to optimize agricultural practices, we propose a methodo...
- Autores:
-
Acevedo Ramos, Jorge Alfredo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad de los Andes
- Repositorio:
- Séneca: repositorio Uniandes
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.uniandes.edu.co:1992/51533
- Acceso en línea:
- http://hdl.handle.net/1992/51533
- Palabra clave:
- Riego
Drones
Aprendizaje automático (Inteligencia artificial)
Ingeniería
- Rights
- openAccess
- License
- https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id |
UNIANDES2_7ce40bb9328f0a0adc7f1ebe61cae547 |
---|---|
oai_identifier_str |
oai:repositorio.uniandes.edu.co:1992/51533 |
network_acronym_str |
UNIANDES2 |
network_name_str |
Séneca: repositorio Uniandes |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Machine learning based energy-efficient uav trajectory design for site-specific crop spraying |
title |
Machine learning based energy-efficient uav trajectory design for site-specific crop spraying |
spellingShingle |
Machine learning based energy-efficient uav trajectory design for site-specific crop spraying Riego Drones Aprendizaje automático (Inteligencia artificial) Ingeniería |
title_short |
Machine learning based energy-efficient uav trajectory design for site-specific crop spraying |
title_full |
Machine learning based energy-efficient uav trajectory design for site-specific crop spraying |
title_fullStr |
Machine learning based energy-efficient uav trajectory design for site-specific crop spraying |
title_full_unstemmed |
Machine learning based energy-efficient uav trajectory design for site-specific crop spraying |
title_sort |
Machine learning based energy-efficient uav trajectory design for site-specific crop spraying |
dc.creator.fl_str_mv |
Acevedo Ramos, Jorge Alfredo |
dc.contributor.advisor.none.fl_str_mv |
Medaglia González, Andrés L. Giraldo Trujillo, Luis Felipe |
dc.contributor.author.none.fl_str_mv |
Acevedo Ramos, Jorge Alfredo |
dc.contributor.jury.none.fl_str_mv |
Jiménez Vargas, José Fernando Solano Blanco, Alfaima Lucia |
dc.subject.armarc.none.fl_str_mv |
Riego Drones Aprendizaje automático (Inteligencia artificial) |
topic |
Riego Drones Aprendizaje automático (Inteligencia artificial) Ingeniería |
dc.subject.themes.none.fl_str_mv |
Ingeniería |
description |
The use of unmanned aerial vehicles (UAVs) in agriculture is extending at a brisk rate due to their huge potential to address problems related to costs, time, productivity and climate change. Motivated by the necessity of leveraging technology to optimize agricultural practices, we propose a methodology to determine an efficient trajectory to be followed by an UAV in order to apply pesticides, fertilizers or water to a crop. The main goal is to satisfy the specific resource requirements of the different areas of the crop, while minimizing energy consumption. A sample data generation method considering drone dynamics is presented and used to implement machine learning algorithms and build a black-box model to predict the energy that a UAV would consume by following a complete trajectory. Given this, a reformulation of the Travelling Salesman Problem (TSP) is solved to obtain the desired energy efficient trajectory for crop spraying. The effectiveness of the methodology has been tested for crop irrigation given a CWSI image of a vineyard. Simulations results shown that a trajectory to properly irrigate the crop while significantly reducing water, time and energy consumption can be obtained. Moreover, a neural network was trained to accurately predict energy consumption in just 0.06% of the run time that would require its estimation with a white-box model, thereby reducing the time needed to solve the TSP problem from a week to a few minutes. According to these results, the proposed methodology could be implemented to quickly obtain trajectories for any given crop, contributing to the reduction of resources spent during the spraying process. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-08-10T18:29:36Z |
dc.date.available.none.fl_str_mv |
2021-08-10T18:29:36Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/1992/51533 |
dc.identifier.pdf.none.fl_str_mv |
22754.pdf |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad de los Andes |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional Séneca |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repositorio.uniandes.edu.co/ |
url |
http://hdl.handle.net/1992/51533 |
identifier_str_mv |
22754.pdf instname:Universidad de los Andes reponame:Repositorio Institucional Séneca repourl:https://repositorio.uniandes.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.uri.*.fl_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
24 hojas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de los Andes |
dc.publisher.program.none.fl_str_mv |
Ingeniería Electrónica |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.department.none.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
publisher.none.fl_str_mv |
Universidad de los Andes |
institution |
Universidad de los Andes |
bitstream.url.fl_str_mv |
https://repositorio.uniandes.edu.co/bitstreams/c6ec72a9-c1ed-4202-9c22-d85348d84ce7/download https://repositorio.uniandes.edu.co/bitstreams/de7dc8fb-5097-49f2-859c-3db28e470976/download https://repositorio.uniandes.edu.co/bitstreams/4740d9e9-d3ae-46db-8bcd-4ff1b67a4c5f/download |
bitstream.checksum.fl_str_mv |
377a45c648422999eb47acf71fe3690a c22b97e5537bf9e542709276b398c145 8193eb52012bbeb16cd6c6d0ca3e8417 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional Séneca |
repository.mail.fl_str_mv |
adminrepositorio@uniandes.edu.co |
_version_ |
1812134037337145344 |
spelling |
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Medaglia González, Andrés L.98d6c750-b61d-4190-9c16-2bc8d136a198500Giraldo Trujillo, Luis Felipevirtual::14965-1Acevedo Ramos, Jorge Alfredo3cd020ad-4aa8-400d-9d00-1c6b8d42aa2a400Jiménez Vargas, José FernandoSolano Blanco, Alfaima Lucia2021-08-10T18:29:36Z2021-08-10T18:29:36Z2020http://hdl.handle.net/1992/5153322754.pdfinstname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/The use of unmanned aerial vehicles (UAVs) in agriculture is extending at a brisk rate due to their huge potential to address problems related to costs, time, productivity and climate change. Motivated by the necessity of leveraging technology to optimize agricultural practices, we propose a methodology to determine an efficient trajectory to be followed by an UAV in order to apply pesticides, fertilizers or water to a crop. The main goal is to satisfy the specific resource requirements of the different areas of the crop, while minimizing energy consumption. A sample data generation method considering drone dynamics is presented and used to implement machine learning algorithms and build a black-box model to predict the energy that a UAV would consume by following a complete trajectory. Given this, a reformulation of the Travelling Salesman Problem (TSP) is solved to obtain the desired energy efficient trajectory for crop spraying. The effectiveness of the methodology has been tested for crop irrigation given a CWSI image of a vineyard. Simulations results shown that a trajectory to properly irrigate the crop while significantly reducing water, time and energy consumption can be obtained. Moreover, a neural network was trained to accurately predict energy consumption in just 0.06% of the run time that would require its estimation with a white-box model, thereby reducing the time needed to solve the TSP problem from a week to a few minutes. According to these results, the proposed methodology could be implemented to quickly obtain trajectories for any given crop, contributing to the reduction of resources spent during the spraying process.Motivados por la necesidad de aprovechar la tecnología para optimizar prácticas tradicionales en agricultura, se propone una metodología para obtener de manera rápida y precisa una trayectoria eficiente para aplicar pesticidas, fertilizantes o agua sobre un cultivo mediante drones de aspersión. Estas trayectorias son determinadas mediante la solución de una reformulación del TSP, de modo que se atiendan las necesidades específicas de cada zona del cultivo y se minimice el consumo de energía del dron. Para ello, se parte de la hipótesis de que se puede modelar la relación entre la energía consumida, las dinámicas del dron y la trayectoria a seguir utilizando algortimos de Machine Learning, permitiendo solucionar el problema para cualquier imagen de interés que represente los requerimientos del cultivo. La efectividad de la metodología fue evaluada mediante la simulación de una tarea de irrigación para un viñedo, dada una imagen del índice de estrés hídrico (CWSI). Una red neuronal fue entrenada para predecir de manera precisa el consumo de energía en solo 0.06% del tiempo requerido para obtener el mismo resultado mediante la resolución de un modelo dinámico del dron. Buscando regar lo necesario y minimizar el consumo de energía, estimado a partir de la red neuronal, se obtuvo de manera rápida una trayectoria para irrigar de manera precisa el viñedo, con error medio menor al 10% y una reducción de energía, agua y tiempo significativa respecto a otras metodologías en la literatura. Sujeto a pruebas experimentales, la metodología propuesta constituye una primera aproximación al objetivo de mejorar la precisión en tareas de aspersión, contribuyendo a la eficiencia en el uso de recursos y al incremento de la productividad en el campo.Ingeniero ElectrónicoPregrado24 hojasapplication/pdfengUniversidad de los AndesIngeniería ElectrónicaFacultad de IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaMachine learning based energy-efficient uav trajectory design for site-specific crop sprayingTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TPRiegoDronesAprendizaje automático (Inteligencia artificial)Ingeniería201620360Publicationhttps://scholar.google.es/citations?user=4TGvo8AAAAJvirtual::14965-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000802506virtual::14965-1eb386eec-3ec8-40c2-829d-ae8cbf0e384evirtual::14965-1eb386eec-3ec8-40c2-829d-ae8cbf0e384evirtual::14965-1THUMBNAIL22754.pdf.jpg22754.pdf.jpgIM Thumbnailimage/jpeg12172https://repositorio.uniandes.edu.co/bitstreams/c6ec72a9-c1ed-4202-9c22-d85348d84ce7/download377a45c648422999eb47acf71fe3690aMD55TEXT22754.pdf.txt22754.pdf.txtExtracted texttext/plain54615https://repositorio.uniandes.edu.co/bitstreams/de7dc8fb-5097-49f2-859c-3db28e470976/downloadc22b97e5537bf9e542709276b398c145MD54ORIGINAL22754.pdfapplication/pdf2577570https://repositorio.uniandes.edu.co/bitstreams/4740d9e9-d3ae-46db-8bcd-4ff1b67a4c5f/download8193eb52012bbeb16cd6c6d0ca3e8417MD511992/51533oai:repositorio.uniandes.edu.co:1992/515332024-03-13 15:20:11.301https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.co |