Exploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae)

Preening is a crucial aspect of avian behavior because it underpins the maintenance of feathers and the control of ectosymbionts, including ectoparasites. The bill, which evolved adaptively to perform different activities like self-defense, thermal regulation, and primarily feeding, also plays a key...

Full description

Autores:
Novoa Páramo, Juliana Paola
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
eng
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/75003
Acceso en línea:
https://hdl.handle.net/1992/75003
Palabra clave:
Bill morphology
Ectosymbiont infestation
Mites
Lice
Preening
Symbiosis
Biología
Rights
openAccess
License
https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
id UNIANDES2_789f14f5f9bd6f25c81a2da380576a2e
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/75003
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.eng.fl_str_mv Exploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae)
title Exploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae)
spellingShingle Exploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae)
Bill morphology
Ectosymbiont infestation
Mites
Lice
Preening
Symbiosis
Biología
title_short Exploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae)
title_full Exploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae)
title_fullStr Exploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae)
title_full_unstemmed Exploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae)
title_sort Exploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae)
dc.creator.fl_str_mv Novoa Páramo, Juliana Paola
dc.contributor.advisor.none.fl_str_mv Soto-Patiño, Juliana
Cadena Ordónez, Carlos Daniel
dc.contributor.author.none.fl_str_mv Novoa Páramo, Juliana Paola
dc.contributor.researchgroup.none.fl_str_mv Facultad de Ciencias::Biología Evolutiva de Vertebrados
dc.subject.keyword.eng.fl_str_mv Bill morphology
Ectosymbiont infestation
Mites
Lice
Preening
Symbiosis
topic Bill morphology
Ectosymbiont infestation
Mites
Lice
Preening
Symbiosis
Biología
dc.subject.themes.spa.fl_str_mv Biología
description Preening is a crucial aspect of avian behavior because it underpins the maintenance of feathers and the control of ectosymbionts, including ectoparasites. The bill, which evolved adaptively to perform different activities like self-defense, thermal regulation, and primarily feeding, also plays a key role in preening. The effectiveness of preening may be correlated with bill morphology, with some shapes (e.g.ong or highly decurved bills), presumed to be less effective. Given the remarkable diversity of bill morphologies among hummingbirds, we assessed the relationship between bill morphology and ectosymbiont infestation in this avian family. We obtained infestation data of ectosymbionts from 18 species of hummingbirds from Colombia representing diverse bill morphotypes and examined the relationship between bill shape and infestation by mites and lice in a phylogenetic context. We found that hummingbirds with straighter and deeper bills have higher ectosymbiont prevalence, including mutualistic mites and ectosymbionts in general. However, no significant relationship was found between bill shape and louse infestation independently. These findings suggest that bill shape, influenced by feeding-selective pressures, may impact preening effectiveness and thereby ectosymbiont loads, implying potential trade-offs in morphological adaptations. Further investigation is needed to evaluate other factors, such as additional morphological traits, preening behavior, and ecological factors, in predicting ectosymbiont loads.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-05T20:08:23Z
dc.date.available.none.fl_str_mv 2024-08-05T20:08:23Z
dc.date.issued.none.fl_str_mv 2024-08-02
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/75003
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/75003
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv Barbosa, A., S. Merino, F. Lope, and A. P. Møller. 2002. Effects of Feather Lice on Flight Behavior of Male Barn Swallows (Hirundo Rustica). The Auk 119:213–216.
Bautista-Hernández, C. E., S. Monks, G. Pulido-Flores, and A. E. Rodríguez-Ibarra. 2015. Revisión bibliográfica de algunos términos ecológicos usados en parasitología, y su aplicación en estudios de caso.
Bodawatta, K. H., I. Shriner, S. Pigott, B. Koane, C. Vinagre-Izquierdo, R. S. Rios, K. A. Jønsson, and W. P. Tori. 2022. Ecological factors driving the feather mite associations in tropical avian hosts. Journal of Avian Biology 2022:e02951.
Bush, S. E., and D. H. Clayton. 2018. Anti-parasite behaviour of birds. Phil. Trans. R. Soc. B 373:20170196.
Bush, S. E., E. Sohn, and D. H. Clayton. 2006. ECOMORPHOLOGY OF PARASITE ATTACHMENT: EXPERIMENTS WITH FEATHER LICE. Journal of Parasitology 92:25–31.
Bush, S. E., S. M. Villa, T. J. Boves, D. Brewer, and J. R. Belthoff. 2012. Influence of Bill and Foot Morphology on the Ectoparasites of Barn Owls. The Journal of Parasitology 98:256–61. Allen Press Inc., Lawrence, United Kingdom.
Carrillo, C. M., F. Valera, A. Barbosa, and E. Moreno. 2007. Thriving in an arid environment: High prevalence of avian lice in low humidity conditions. Ecoscience 14:241–249.
Clayton, D. H., and P. Cotgreave. 1994. Relationship of bill morphology to grooming behaviour in birds. Animal Behaviour 47:195–201.
Clayton, D. H., B. R. Moyer, S. E. Bush, T. G. Jones, D. W. Gardiner, B. B. Rhodes, and F. Goller. 2005. Adaptive significance of avian beak morphology for ectoparasite control. Proc. R. Soc. B. 272:811–817.
Colwell, R. 1986. Community biology and sexual selection: Lessons from hummingbird flower mites. Pp. 406–424 in.
Doña, J., H. Proctor, D. Serrano, K. P. Johnson, A. O. Oploo, J. C. Huguet-Tapia, M. S. Ascunce, and R. Jovani. 2019. Feather mites play a role in cleaning host feathers: New insights from DNA metabarcoding and microscopy. Molecular Ecology 28:203–218.
Dowling, D. K., D. S. Richardson, and J. Komdeur. 2001. No effects of a feather mite on body condition, survivorship, or grooming behavior in the Seychelles warbler, Acrocephalus sechellensis. Behav Ecol Sociobiol 50:257–262.
Drummond, A. J., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214.
Galloway, T. D., and R. J. Lamb. 2021. Population Dynamics of Chewing Lice (Phthiraptera) Infesting Birds (Aves). Annual Review of Entomology 66:209–224.
Gómez H, C., C. D. Cadena, A. M. Cuervo, J. Díaz-Cárdenas, F. García-Cardona, N. Niño-Rodríguez, N. Ocampo-Peñuela, D. Ocampo, G. Seeholzer, A. Sierra-Ricaurte, J. Soto-Patiño, C. Gómez H, C. D. Cadena, A. M. Cuervo, J. Díaz-Cárdenas, F. García-Cardona, N. Niño-Rodríguez, N. Ocampo-Peñuela, D. Ocampo, G. Seeholzer, A. Sierra-Ricaurte, and J. Soto-Patiño. 2022. Reexpedición Colombia: Entender el pasado para empoderar acciones que fortalezcan el conocimiento y conservación de las aves. Biota colombiana 23. Instituto Alexander von Humboldt.
Greenberg, R., V. Cadena, R. M. Danner, and G. Tattersall. 2012. Heat Loss May Explain Bill Size Differences between Birds Occupying Different Habitats. PLoS ONE 7:e40933.
Jetz, W., G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012. The global diversity of birds in space and time. Nature 491:444–448. Nature Publishing Group.
Johnson, K. P., S. M. Shreve, and V. S. Smith. 2012. Repeated adaptive divergence of microhabitat specialization in avian feather lice. BMC Biology 10:52.
Klingenberg, C. P. 2011. Morpho J: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11:353–357.
Kolencik, S., E. L. Stanley, A. Punnath, A. R. Grant, J. Doña, K. P. Johnson, and J. M. Allen. 2024. Parasite escape mechanisms drive morphological diversification in avian lice. Proceedings of the Royal Society B: Biological Sciences 291:20232665. Royal Society.
Mironov, S. V., and T. D. Galloway. 2023. A new species of the feather mite genus Allodectes (Acariformes: Proctophyllodidae) from the ruby-throated hummingbird, Archilochus colubris (Apodiformes: Trochilidae), in Canada. Acarologia 63:807–816. Les Amis d’Acarologia.
Mitteroecker, P., P. Gunz, S. Windhager, and K. Schaefer. 2013. A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix, the Italian Journal of Mammalogy 24.
Moyer, B. R., A. T. Peterson, and D. H. Clayton. 2002. Influence of Bill Shape on Ectoparasite Load in Western Scrub-Jays. The Condor 104:675–678.
Myczko, Ł., Z. Mizerová, A. M. Kubicka, T. H. Sparks, and M. Hromada. 2020. Bill morphology and biometrics of three sibling woodpecker species from sympatric populations. Bird Study 67:8–18. Taylor & Francis.
Oniki-Willis, Y., E. O. Willis, L. E. Lopes, and L. Rózsa. 2023. Museum-Based Research on the Lice (Insecta: Phthiraptera) Infestations of Hummingbirds (Aves: Trochilidae)—Prevalence, Genus Richness and Parasite Associations. Diversity 15:54.
Proctor, H. C. 2003. Feather mites (Acari: Astigmata): Ecology, behavior, and evolution. Annual Review of Entomology 48:185. Annual Reviews, Inc., Palo Alto, United States.
Revell, L. J. 2024. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12:e16505.
Rico-Guevara, A., and M. Araya-Salas. 2015. Bills as daggers? A test for sexually dimorphic weapons in a lekking hummingbird. Behavioral Ecology 26:21–29.
Rohlf, F. J. 2017. Program TpsDig, version 2.31. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY, USA.
Rohlf, F. J. 2018. TpsUtil (Version 1.76). New York: Department of Ecology and Evolution and Anthropology, State University of New York at Stony Brook.
Rozsa, L. 1997. Patterns in the Abundance of Avian Lice (Phthiraptera: Amblycera, Ischnocera). Journal of Avian Biology 28:249.
Rózsa, L., and J. Garay. 2023. Definitions of parasitism, considering its potentially opposing effects at different levels of hierarchical organization. Parasitology 150:761–768.
Sonne, J., T. Zanata, A. Martín González, N. Cumbicus, J. Fjeldså, R. Colwell, B. Tinoco, C. Rahbek, and B. Dalsgaard. 2019. The distributions of morphologically specialized hummingbirds coincide with floral trait matching across an Andean elevational gradient. Biotropica 51.
Temeles, E. J., and W. J. Kress. 2003. Adaptation in a Plant-Hummingbird Association. Science 300:630–633.
Trallero, L., M. Farré, R. A. Phillips, and J. Navarro. 2019. Geometric morphometrics reveal interspecific and sexual differences in bill morphology in four sympatric planktivorous petrels. Journal of Zoology 307:167–177.
Villa, S. M., G. B. Goodman, J. S. Ruff, and D. H. Clayton. 2016. Does allopreening control avian ectoparasites? Biology Letters 12:20160362. Royal Society.
dc.rights.uri.none.fl_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdf
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 29 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Biología
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Biológicas
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/7f80781b-7541-4871-b8ce-c3e8a40ada01/download
https://repositorio.uniandes.edu.co/bitstreams/872ea403-94e0-4c45-b621-fd1dd458a5a5/download
https://repositorio.uniandes.edu.co/bitstreams/a9acceac-2b9c-4445-9cae-a4748075150e/download
bitstream.checksum.fl_str_mv 3d2415d0c95da49b224447d7586c1021
28f2acab71109b138e13d0fd79381af0
ae9e573a68e7f92501b6913cc846c39f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1808390227002130432
spelling Soto-Patiño, JulianaCadena Ordónez, Carlos Danielvirtual::19717-1Novoa Páramo, Juliana PaolaFacultad de Ciencias::Biología Evolutiva de Vertebrados2024-08-05T20:08:23Z2024-08-05T20:08:23Z2024-08-02https://hdl.handle.net/1992/75003instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Preening is a crucial aspect of avian behavior because it underpins the maintenance of feathers and the control of ectosymbionts, including ectoparasites. The bill, which evolved adaptively to perform different activities like self-defense, thermal regulation, and primarily feeding, also plays a key role in preening. The effectiveness of preening may be correlated with bill morphology, with some shapes (e.g.ong or highly decurved bills), presumed to be less effective. Given the remarkable diversity of bill morphologies among hummingbirds, we assessed the relationship between bill morphology and ectosymbiont infestation in this avian family. We obtained infestation data of ectosymbionts from 18 species of hummingbirds from Colombia representing diverse bill morphotypes and examined the relationship between bill shape and infestation by mites and lice in a phylogenetic context. We found that hummingbirds with straighter and deeper bills have higher ectosymbiont prevalence, including mutualistic mites and ectosymbionts in general. However, no significant relationship was found between bill shape and louse infestation independently. These findings suggest that bill shape, influenced by feeding-selective pressures, may impact preening effectiveness and thereby ectosymbiont loads, implying potential trade-offs in morphological adaptations. Further investigation is needed to evaluate other factors, such as additional morphological traits, preening behavior, and ecological factors, in predicting ectosymbiont loads.Pregrado29 páginasapplication/pdfengUniversidad de los AndesBiologíaFacultad de CienciasDepartamento de Ciencias Biológicashttps://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Exploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae)Trabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPBill morphologyEctosymbiont infestationMitesLicePreeningSymbiosisBiologíaBarbosa, A., S. Merino, F. Lope, and A. P. Møller. 2002. Effects of Feather Lice on Flight Behavior of Male Barn Swallows (Hirundo Rustica). The Auk 119:213–216.Bautista-Hernández, C. E., S. Monks, G. Pulido-Flores, and A. E. Rodríguez-Ibarra. 2015. Revisión bibliográfica de algunos términos ecológicos usados en parasitología, y su aplicación en estudios de caso.Bodawatta, K. H., I. Shriner, S. Pigott, B. Koane, C. Vinagre-Izquierdo, R. S. Rios, K. A. Jønsson, and W. P. Tori. 2022. Ecological factors driving the feather mite associations in tropical avian hosts. Journal of Avian Biology 2022:e02951.Bush, S. E., and D. H. Clayton. 2018. Anti-parasite behaviour of birds. Phil. Trans. R. Soc. B 373:20170196.Bush, S. E., E. Sohn, and D. H. Clayton. 2006. ECOMORPHOLOGY OF PARASITE ATTACHMENT: EXPERIMENTS WITH FEATHER LICE. Journal of Parasitology 92:25–31.Bush, S. E., S. M. Villa, T. J. Boves, D. Brewer, and J. R. Belthoff. 2012. Influence of Bill and Foot Morphology on the Ectoparasites of Barn Owls. The Journal of Parasitology 98:256–61. Allen Press Inc., Lawrence, United Kingdom.Carrillo, C. M., F. Valera, A. Barbosa, and E. Moreno. 2007. Thriving in an arid environment: High prevalence of avian lice in low humidity conditions. Ecoscience 14:241–249.Clayton, D. H., and P. Cotgreave. 1994. Relationship of bill morphology to grooming behaviour in birds. Animal Behaviour 47:195–201.Clayton, D. H., B. R. Moyer, S. E. Bush, T. G. Jones, D. W. Gardiner, B. B. Rhodes, and F. Goller. 2005. Adaptive significance of avian beak morphology for ectoparasite control. Proc. R. Soc. B. 272:811–817.Colwell, R. 1986. Community biology and sexual selection: Lessons from hummingbird flower mites. Pp. 406–424 in.Doña, J., H. Proctor, D. Serrano, K. P. Johnson, A. O. Oploo, J. C. Huguet-Tapia, M. S. Ascunce, and R. Jovani. 2019. Feather mites play a role in cleaning host feathers: New insights from DNA metabarcoding and microscopy. Molecular Ecology 28:203–218.Dowling, D. K., D. S. Richardson, and J. Komdeur. 2001. No effects of a feather mite on body condition, survivorship, or grooming behavior in the Seychelles warbler, Acrocephalus sechellensis. Behav Ecol Sociobiol 50:257–262.Drummond, A. J., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214.Galloway, T. D., and R. J. Lamb. 2021. Population Dynamics of Chewing Lice (Phthiraptera) Infesting Birds (Aves). Annual Review of Entomology 66:209–224.Gómez H, C., C. D. Cadena, A. M. Cuervo, J. Díaz-Cárdenas, F. García-Cardona, N. Niño-Rodríguez, N. Ocampo-Peñuela, D. Ocampo, G. Seeholzer, A. Sierra-Ricaurte, J. Soto-Patiño, C. Gómez H, C. D. Cadena, A. M. Cuervo, J. Díaz-Cárdenas, F. García-Cardona, N. Niño-Rodríguez, N. Ocampo-Peñuela, D. Ocampo, G. Seeholzer, A. Sierra-Ricaurte, and J. Soto-Patiño. 2022. Reexpedición Colombia: Entender el pasado para empoderar acciones que fortalezcan el conocimiento y conservación de las aves. Biota colombiana 23. Instituto Alexander von Humboldt.Greenberg, R., V. Cadena, R. M. Danner, and G. Tattersall. 2012. Heat Loss May Explain Bill Size Differences between Birds Occupying Different Habitats. PLoS ONE 7:e40933.Jetz, W., G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012. The global diversity of birds in space and time. Nature 491:444–448. Nature Publishing Group.Johnson, K. P., S. M. Shreve, and V. S. Smith. 2012. Repeated adaptive divergence of microhabitat specialization in avian feather lice. BMC Biology 10:52.Klingenberg, C. P. 2011. Morpho J: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11:353–357.Kolencik, S., E. L. Stanley, A. Punnath, A. R. Grant, J. Doña, K. P. Johnson, and J. M. Allen. 2024. Parasite escape mechanisms drive morphological diversification in avian lice. Proceedings of the Royal Society B: Biological Sciences 291:20232665. Royal Society.Mironov, S. V., and T. D. Galloway. 2023. A new species of the feather mite genus Allodectes (Acariformes: Proctophyllodidae) from the ruby-throated hummingbird, Archilochus colubris (Apodiformes: Trochilidae), in Canada. Acarologia 63:807–816. Les Amis d’Acarologia.Mitteroecker, P., P. Gunz, S. Windhager, and K. Schaefer. 2013. A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix, the Italian Journal of Mammalogy 24.Moyer, B. R., A. T. Peterson, and D. H. Clayton. 2002. Influence of Bill Shape on Ectoparasite Load in Western Scrub-Jays. The Condor 104:675–678.Myczko, Ł., Z. Mizerová, A. M. Kubicka, T. H. Sparks, and M. Hromada. 2020. Bill morphology and biometrics of three sibling woodpecker species from sympatric populations. Bird Study 67:8–18. Taylor & Francis.Oniki-Willis, Y., E. O. Willis, L. E. Lopes, and L. Rózsa. 2023. Museum-Based Research on the Lice (Insecta: Phthiraptera) Infestations of Hummingbirds (Aves: Trochilidae)—Prevalence, Genus Richness and Parasite Associations. Diversity 15:54.Proctor, H. C. 2003. Feather mites (Acari: Astigmata): Ecology, behavior, and evolution. Annual Review of Entomology 48:185. Annual Reviews, Inc., Palo Alto, United States.Revell, L. J. 2024. phytools 2.0: an updated R ecosystem for phylogenetic comparative methods (and other things). PeerJ 12:e16505.Rico-Guevara, A., and M. Araya-Salas. 2015. Bills as daggers? A test for sexually dimorphic weapons in a lekking hummingbird. Behavioral Ecology 26:21–29.Rohlf, F. J. 2017. Program TpsDig, version 2.31. Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook, NY, USA.Rohlf, F. J. 2018. TpsUtil (Version 1.76). New York: Department of Ecology and Evolution and Anthropology, State University of New York at Stony Brook.Rozsa, L. 1997. Patterns in the Abundance of Avian Lice (Phthiraptera: Amblycera, Ischnocera). Journal of Avian Biology 28:249.Rózsa, L., and J. Garay. 2023. Definitions of parasitism, considering its potentially opposing effects at different levels of hierarchical organization. Parasitology 150:761–768.Sonne, J., T. Zanata, A. Martín González, N. Cumbicus, J. Fjeldså, R. Colwell, B. Tinoco, C. Rahbek, and B. Dalsgaard. 2019. The distributions of morphologically specialized hummingbirds coincide with floral trait matching across an Andean elevational gradient. Biotropica 51.Temeles, E. J., and W. J. Kress. 2003. Adaptation in a Plant-Hummingbird Association. Science 300:630–633.Trallero, L., M. Farré, R. A. Phillips, and J. Navarro. 2019. Geometric morphometrics reveal interspecific and sexual differences in bill morphology in four sympatric planktivorous petrels. Journal of Zoology 307:167–177.Villa, S. M., G. B. Goodman, J. S. Ruff, and D. H. Clayton. 2016. Does allopreening control avian ectoparasites? Biology Letters 12:20160362. Royal Society.202012881Publicationhttps://scholar.google.es/citations?user=HC_mHmUAAAAJvirtual::19717-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000756580virtual::19717-111af7bde-0a26-4d8f-8dd9-4e99b1569940virtual::19717-111af7bde-0a26-4d8f-8dd9-4e99b1569940virtual::19717-1ORIGINAL202012881_ForAutEntTesis_TraGraSisBib_202410.pdf202012881_ForAutEntTesis_TraGraSisBib_202410.pdfHIDEapplication/pdf210997https://repositorio.uniandes.edu.co/bitstreams/7f80781b-7541-4871-b8ce-c3e8a40ada01/download3d2415d0c95da49b224447d7586c1021MD51Exploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae).pdfExploring the link between morphological bill traits and infestation by ectosymbionts in hummingbirds (Trochilidae).pdfapplication/pdf1373556https://repositorio.uniandes.edu.co/bitstreams/872ea403-94e0-4c45-b621-fd1dd458a5a5/download28f2acab71109b138e13d0fd79381af0MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/a9acceac-2b9c-4445-9cae-a4748075150e/downloadae9e573a68e7f92501b6913cc846c39fMD531992/75003oai:repositorio.uniandes.edu.co:1992/750032024-08-05 15:11:15.538https://repositorio.uniandes.edu.co/static/pdf/aceptacion_uso_es.pdfopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K