Decisiones empresariales mediante la analítica de datos en redes sociales: una aproximación al contexto colombiano

Este proyecto de investigación explora las metodologías y tecnologías que permiten a las organizaciones utilizar datos de redes sociales como fuente de información empresarial en el contexto colombiano para apoyar decisiones estratégicas y operativas. A través de una revisión de la literatura, se es...

Full description

Autores:
Pérez Rivera, Shadith
Calderón Molina, Valentina
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad de los Andes
Repositorio:
Séneca: repositorio Uniandes
Idioma:
spa
OAI Identifier:
oai:repositorio.uniandes.edu.co:1992/74868
Acceso en línea:
https://hdl.handle.net/1992/74868
Palabra clave:
Analítica de datos
Redes sociales
Fuente de información
Toma de decisiones
Extracción de datos
Procesamiento de datos
Almacenamiento de datos
Ingeniería
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id UNIANDES2_75cfe596e333a0e5aa3cd6605056b8aa
oai_identifier_str oai:repositorio.uniandes.edu.co:1992/74868
network_acronym_str UNIANDES2
network_name_str Séneca: repositorio Uniandes
repository_id_str
dc.title.spa.fl_str_mv Decisiones empresariales mediante la analítica de datos en redes sociales: una aproximación al contexto colombiano
dc.title.alternative.eng.fl_str_mv Business decisions through social data analytics in Colombia
title Decisiones empresariales mediante la analítica de datos en redes sociales: una aproximación al contexto colombiano
spellingShingle Decisiones empresariales mediante la analítica de datos en redes sociales: una aproximación al contexto colombiano
Analítica de datos
Redes sociales
Fuente de información
Toma de decisiones
Extracción de datos
Procesamiento de datos
Almacenamiento de datos
Ingeniería
title_short Decisiones empresariales mediante la analítica de datos en redes sociales: una aproximación al contexto colombiano
title_full Decisiones empresariales mediante la analítica de datos en redes sociales: una aproximación al contexto colombiano
title_fullStr Decisiones empresariales mediante la analítica de datos en redes sociales: una aproximación al contexto colombiano
title_full_unstemmed Decisiones empresariales mediante la analítica de datos en redes sociales: una aproximación al contexto colombiano
title_sort Decisiones empresariales mediante la analítica de datos en redes sociales: una aproximación al contexto colombiano
dc.creator.fl_str_mv Pérez Rivera, Shadith
Calderón Molina, Valentina
dc.contributor.advisor.none.fl_str_mv Ávila Cifuentes, Oscar Javier
dc.contributor.author.none.fl_str_mv Pérez Rivera, Shadith
Calderón Molina, Valentina
dc.subject.keyword.spa.fl_str_mv Analítica de datos
Redes sociales
Fuente de información
Toma de decisiones
Extracción de datos
Procesamiento de datos
Almacenamiento de datos
topic Analítica de datos
Redes sociales
Fuente de información
Toma de decisiones
Extracción de datos
Procesamiento de datos
Almacenamiento de datos
Ingeniería
dc.subject.themes.none.fl_str_mv Ingeniería
description Este proyecto de investigación explora las metodologías y tecnologías que permiten a las organizaciones utilizar datos de redes sociales como fuente de información empresarial en el contexto colombiano para apoyar decisiones estratégicas y operativas. A través de una revisión de la literatura, se establecen hipótesis sobre los beneficios y desafíos de la analítica de los datos. Estas hipótesis se validan con entrevistas a profesionales colombianos del sector, quienes aportan sus perspectivas de cómo la analítica de datos puede mejorar la toma de decisiones en áreas claves como el marketing, la gestión de productos y la logística. El proyecto detalla los procesos de extracción, procesamiento, almacenamiento y análisis de datos provenientes de plataformas digitales. A través de un marco metodológico, se evalúa el estado del arte internacional y se valida los hallazgos con profesionales de la industria colombiana. Los resultados indican que la integración de datos de redes sociales en la toma de decisiones empresariales puede mejorar la eficiencia y efectividad de las operaciones, proporcionando información valiosa en tiempo real y permitiendo una personalización más precisa de productos y servicios en el contexto colombiano.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-01T19:25:49Z
dc.date.available.none.fl_str_mv 2024-08-01T19:25:49Z
dc.date.issued.none.fl_str_mv 2024-07-30
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/1992/74868
dc.identifier.instname.none.fl_str_mv instname:Universidad de los Andes
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional Séneca
dc.identifier.repourl.none.fl_str_mv repourl:https://repositorio.uniandes.edu.co/
url https://hdl.handle.net/1992/74868
identifier_str_mv instname:Universidad de los Andes
reponame:Repositorio Institucional Séneca
repourl:https://repositorio.uniandes.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv M. Meiryani, S. Dewiyanti, A. D. Zahra, W. Santoso, and H. Deviarti, “Big Data Analytics in Indonesia : Literature Study,” in ACM International Conference Proceeding Series, 2023, pp. 23–28. doi: 10.1145/3603955.3603960.
C.-Y. Huang, C.-L. Yang, and Y.-H. Hsiao, “A novel framework for mining social media data based on text mining, topic modeling, random forest, and danp methods,” Mathematics, vol. 9, no. 17, 2021, doi: 10.3390/math9172041.
A. Jabbar, P. Akhtar, and S. Dani, “Real-time big data processing for instantaneous marketing decisions: A problematization approach,” Industrial Marketing Management, vol. 90, pp. 558–569, 2020, doi: 10.1016/j.indmarman.2019.09.001.
R. Math, Big data analytics: Recent and emerging application in services industry, vol. 654. 2018. doi: 10.1007/978-981-10-6620-7_21.
H. Zhang, Z. Zang, H. Zhu, M. I. Uddin, and M. A. Amin, “Big data-assisted social media analytics for business model for business decision making system competitive analysis,” Inf Process Manag, vol. 59, no. 1, 2022, doi: 10.1016/j.ipm.2021.102762.
G. A. de Oliveira, R. O. Albuquerque, C. A. B. de Andrade, R. T. de Sousa, A. L. S. Orozco, and L. J. G. Villalba, “Anonymous real-time analytics monitoring solution for decision making supported by sentiment analysis,” Sensors (Switzerland), vol. 20, no. 16, pp. 1–29, 2020, doi: 10.3390/s20164557.
S. A. Farimani, M. V. Jahan, and A. Milani Fard, “From Text Representation to Financial Market Prediction: A Literature Review,” Information (Switzerland), vol. 13, no. 10, 2022, doi: 10.3390/info13100466.
P. Nanda and V. Kumar, “Information Processing and Data Analytics for Decision Making: A Journey from Traditional to Modern Approaches,” Information Resources Management Journal, vol. 35, no. 2, 2022, doi: 10.4018/IRMJ.291693.
R. A. Camama, J. M. Baldelomar, J. M. Claveria, M. C. Espinas, J. M. Cabardo, and L. W. Rabago, “Q-DAR: Quick disaster aid and response model using Naïve Bayes and Bag-of-Words algorithm,” in IOP Conference Series: Materials Science and Engineering, 2019. doi: 10.1088/1757-899X/482/1/012051.
A. S. Yüksel and F. G. Tan, “A real-time social network-based knowledge discovery system for decision making,” Automatika, vol. 59, no. 3, pp. 262–274, 2018, doi: 10.1080/00051144.2018.1531214.
M. Arafeh, P. Ceravolo, A. Mourad, E. Damiani, and E. Bellini, “Ontology based recommender system using social network data,” Future Generation Computer Systems, vol. 115, pp. 769–779, 2021, doi: 10.1016/j.future.2020.09.030.
S. Ahmadi, S. Shokouhyar, M. Amerioun, and N. Salehi Tabrizi, “A social media analytics-based approach to customer-centric reverse logistics management of electronic devices: A case study on notebooks,” Journal of Retailing and Consumer Services, vol. 76, 2024, doi: 10.1016/j.jretconser.2023.103540.
S. Ahmadi, S. Shokouhyar, M. H. Shahidzadeh, and I. Elpiniki Papageorgiou, “The bright side of consumers’ opinions of improving reverse logistics decisions: a social media analytic framework,” International Journal of Logistics Research and Applications, vol. 25, no. 6, pp. 977–1010, 2022, doi: 10.1080/13675567.2020.1846693.
C. A. Bono, C. Cappiello, B. Pernici, E. Ramalli, and M. Vitali, “Pipeline Design for Data Preparation for Social Media Analysis,” Journal of Data and Information Quality, vol. 15, no. 4, 2023, doi: 10.1145/3597305.
A. Bustamante, L. Sebastia, and E. Onaindia, “Can tourist attractions boost other activities around? A data analysis through social networks,” Sensors (Switzerland), vol. 19, no. 11, 2019, doi: 10.3390/s19112612.
S. Das, A. Dutta, G. Medina, L. Minjares-Kyle, and Z. Elgart, “Extracting patterns from Twitter to promote biking,” IATSS Research, vol. 43, no. 1, pp. 51–59, 2019, doi: 10.1016/j.iatssr.2018.09.002.
S. Tuarob et al., “DAViS: a unified solution for data collection, analyzation, and visualization in real-time stock market prediction,” Financial Innovation, vol. 7, no. 1, 2021, doi: 10.1186/s40854-021-00269-7.
I. Lasri, A. Riadsolh, and M. Elbelkacemi, “Real-time Twitter Sentiment Analysis for Moroccan Universities using Machine Learning and Big Data Technologies,” International Journal of Emerging Technologies in Learning, vol. 18, no. 5, pp. 42–61, 2023, doi: 10.3991/ijet.v18i05.35959.
B. Abu-Salih, P. Wongthongtham, D. Zhu, K. Y. Chan, and A. Rudra, Social Big Data Analytics: Practices, Techniques, and Applications. 2021. doi: 10.1007/978-981-33-6652-7.
K. Cortis and B. Davis, “Over a decade of social opinion mining: a systematic review,” Artif Intell Rev, vol. 54, no. 7, pp. 4873–4965, 2021, doi: 10.1007/s10462-021-10030-2.
C. R. Valêncio, L. M. M. Silva, W. Tenório, G. F. D. Zafalon, A. C. Colombini, and M. Z. Fortes, “Data warehouse design to support social media analysis in a big data environment,” Journal of Computer Science, vol. 16, no. 2, pp. 126–136, 2020, doi: 10.3844/JCSSP.2020.126.136.
H. Mallek, F. Ghozzi, and F. Gargouri, “Conceptual modeling of big data SPJ operations with Twitter social medium,” Soc Netw Anal Min, vol. 13, no. 1, 2023, doi: 10.1007/s13278-023-01112-w.
L. Dalla Valle and R. Kenett, “Social media big data integration: A new approach based on calibration,” Expert Syst Appl, vol. 111, pp. 76–90, 2018, doi: 10.1016/j.eswa.2017.12.044.
S. C. K. Tékouabou, J. Chenal, R. Azmi, H. Toulni, E. B. Diop, and A. Nikiforova, “Identifying and Classifying Urban Data Sources for Machine Learning-Based Sustainable Urban Planning and Decision Support Systems Development,” Data (Basel), vol. 7, no. 12, 2022, doi: 10.3390/data7120170.
A. Mohamed, M. K. Najafabadi, Y. B. Wah, E. A. K. Zaman, and R. Maskat, “The state of the art and taxonomy of big data analytics: view from new big data framework,” Artif Intell Rev, vol. 53, no. 2, pp. 989–1037, 2020, doi: 10.1007/s10462-019-09685-9.
R. Alhajj, Advanced Technology and Social Media Influence on Research, Industry and Community, vol. 522. 2018. doi: 10.1007/978-3-319-89743-1_1.
G. Bathla, R. Rani, and H. Aggarwal, “Comparative study of NoSQL databases for big data storage,” International Journal of Engineering and Technology(UAE), vol. 7, no. 2, pp. 83–87, 2018, doi: 10.14419/ijet.v7i2.6.10072.
M. Srikanth, A. Liu, N. Adams-Cohen, J. Cao, R. M. Alvarez, and A. Anandkumar, “Dynamic Social Media Monitoring for Fast-Evolving Online Discussions,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2021, pp. 3576–3584. doi: 10.1145/3447548.3467171.
S. Carta, S. Consoli, L. Piras, A. S. Podda, and D. R. Recupero, “Event Detection in Finance Using Hierarchical Clustering Algorithms on News and Tweets,” PeerJ Comput Sci, vol. 7, pp. 1–39, 2021, doi: 10.7717/PEERJ-CS.438.
S. Giglio, F. Bertacchini, E. Bilotta, and P. Pantano, “Using social media to identify tourism attractiveness in six Italian cities,” Tour Manag, vol. 72, pp. 306–312, 2019, doi: 10.1016/j.tourman.2018.12.007.
F. Polese, M. V. Ciasullo, O. Troisi, and G. Maione, “Sustainability in footwear industry: a big data analysis,” Sinergie, vol. 37, no. 1, pp. 149–170, 2019, doi: 10.7433/s108.2019.09.
T. Russo Spena, M. Tregua, A. Ranieri, and F. Bifulco, Business Intelligence and Social Media Analytics. 2021. doi: 10.1007/978-3-030-63376-9_7.
D. Jia, B. Yin, and X. Huang, “Social Network Big Data Hierarchical High-Quality Node Mining,” Wirel Commun Mob Comput, vol. 2021, 2021, doi: 10.1155/2021/1444755.
W. G. Mutasher and A. F. Aljuboori, “New and Existing Approaches Reviewing of Big Data Analysis with Hadoop Tools,” Baghdad Science Journal, vol. 19, no. 4, pp. 887–898, 2022, doi: 10.21123/bsj.2022.19.4.0887.
F. Sassite, M. Addou, and F. Barramou, “A Machine Learning and Multi-Agent Model to Automate Big Data Analytics in Smart Cities,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 7, pp. 441–451, 2022, doi: 10.14569/IJACSA.2022.0130754.
J. R. Saura, B. R. Herraez, and A. Reyes-Menendez, “Comparing a traditional approach for financial brand communication analysis with a big data analytics technique,” IEEE Access, vol. 7, pp. 37100–37108, 2019, doi: 10.1109/ACCESS.2019.2905301.
S. Shokouhyar, A. Dehkhodaei, and B. Amiri, “A mixed-method approach for modelling customer-centric mobile phone reverse logistics: application of social media data,” Journal of Modelling in Management, vol. 17, no. 2, pp. 655–696, 2022, doi: 10.1108/JM2-07-2020-0191.
S. Sakr, Z. Maamar, A. Awad, B. Benatallah, and W. M. P. Van Der Aalst, “Business process analytics and big data systems: A roadmap to bridge the gap,” IEEE Access, vol. 6, pp. 77308–77320, 2018, doi: 10.1109/ACCESS.2018.2881759.
L. Tang, Y. Zhang, F. Dai, Y. Yoon, and Y. Song, “What construction topics do they discuss in social media? A case study of weibo in China,” in Construction Research Congress 2018: Construction Information Technology - Selected Papers from the Construction Research Congress 2018, 2018, pp. 612–621. doi: 10.1061/9780784481264.060.
L. I. Tao, “Using big data analytics to build prosperity index of transportation market,” in Proceedings of the 4th ACM SIGSPATIAL International Workshop on Safety and Resilience, EM-GIS 2018, 2018. doi: 10.1145/3284103.3284123.
dc.rights.en.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 76 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de los Andes
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas y Computación
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
dc.publisher.department.none.fl_str_mv Departamento de Ingeniería de Sistemas y Computación
publisher.none.fl_str_mv Universidad de los Andes
institution Universidad de los Andes
bitstream.url.fl_str_mv https://repositorio.uniandes.edu.co/bitstreams/329f23ef-fa1e-4ef4-9b94-de8f99432422/download
https://repositorio.uniandes.edu.co/bitstreams/f3442ca2-74e6-45c4-9a2d-52fae1b5bd1c/download
https://repositorio.uniandes.edu.co/bitstreams/a8c1910a-c608-4f5e-bdac-4fa9ab92ed55/download
https://repositorio.uniandes.edu.co/bitstreams/e847f6cd-563e-408d-8a00-7aa29580ee15/download
https://repositorio.uniandes.edu.co/bitstreams/22253c32-6b23-4e1e-8c21-4e144c648b77/download
https://repositorio.uniandes.edu.co/bitstreams/a8f4305e-b64e-40db-bd9b-82e734af9b06/download
https://repositorio.uniandes.edu.co/bitstreams/ab39cd02-655b-4c4a-b945-408fd3ca86a0/download
https://repositorio.uniandes.edu.co/bitstreams/fb4bb17c-6a37-4ee3-baf9-f4e20aa1b7ad/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
d0789b7af1c5991c8c3b3bb9ce89fa10
16bb0822253dfe3ff6b4dc20635b80bd
ae9e573a68e7f92501b6913cc846c39f
c90fc217ee21b33688d67a6180425b9f
518673295e77362bc916f92cc6a240df
d8ba3a82372b14c15fb00acc0728dbe2
223ec650c6f4da9015a2a56d51596edf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional Séneca
repository.mail.fl_str_mv adminrepositorio@uniandes.edu.co
_version_ 1812134079563300864
spelling Ávila Cifuentes, Oscar Javiervirtual::19541-1Pérez Rivera, ShadithCalderón Molina, Valentina2024-08-01T19:25:49Z2024-08-01T19:25:49Z2024-07-30https://hdl.handle.net/1992/74868instname:Universidad de los Andesreponame:Repositorio Institucional Sénecarepourl:https://repositorio.uniandes.edu.co/Este proyecto de investigación explora las metodologías y tecnologías que permiten a las organizaciones utilizar datos de redes sociales como fuente de información empresarial en el contexto colombiano para apoyar decisiones estratégicas y operativas. A través de una revisión de la literatura, se establecen hipótesis sobre los beneficios y desafíos de la analítica de los datos. Estas hipótesis se validan con entrevistas a profesionales colombianos del sector, quienes aportan sus perspectivas de cómo la analítica de datos puede mejorar la toma de decisiones en áreas claves como el marketing, la gestión de productos y la logística. El proyecto detalla los procesos de extracción, procesamiento, almacenamiento y análisis de datos provenientes de plataformas digitales. A través de un marco metodológico, se evalúa el estado del arte internacional y se valida los hallazgos con profesionales de la industria colombiana. Los resultados indican que la integración de datos de redes sociales en la toma de decisiones empresariales puede mejorar la eficiencia y efectividad de las operaciones, proporcionando información valiosa en tiempo real y permitiendo una personalización más precisa de productos y servicios en el contexto colombiano.This research project explores the methodologies and technologies that enable organizations to use social media data as a source of business information to support strategic and operational decisions within the Colombian context. Through a literature review, hypotheses are established regarding the benefits and types of decisions supported by social data analytics. These hypotheses are validated through interviews with Colombian professionals in the sector, who provide their perspectives on how data analytics can enhance decision-making in key areas such as marketing, product management, and logistics. The results indicate that the integration of social media data into business decision-making can improve the efficiency and effectiveness of operations, providing valuable real-time information and enabling more precise customization of products and services in Colombia.Pregrado76 páginasapplication/pdfspaUniversidad de los AndesIngeniería de Sistemas y ComputaciónFacultad de IngenieríaDepartamento de Ingeniería de Sistemas y ComputaciónAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Decisiones empresariales mediante la analítica de datos en redes sociales: una aproximación al contexto colombianoBusiness decisions through social data analytics in ColombiaTrabajo de grado - Pregradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_7a1fTexthttp://purl.org/redcol/resource_type/TPAnalítica de datosRedes socialesFuente de informaciónToma de decisionesExtracción de datosProcesamiento de datosAlmacenamiento de datosIngenieríaM. Meiryani, S. Dewiyanti, A. D. Zahra, W. Santoso, and H. Deviarti, “Big Data Analytics in Indonesia : Literature Study,” in ACM International Conference Proceeding Series, 2023, pp. 23–28. doi: 10.1145/3603955.3603960.C.-Y. Huang, C.-L. Yang, and Y.-H. Hsiao, “A novel framework for mining social media data based on text mining, topic modeling, random forest, and danp methods,” Mathematics, vol. 9, no. 17, 2021, doi: 10.3390/math9172041.A. Jabbar, P. Akhtar, and S. Dani, “Real-time big data processing for instantaneous marketing decisions: A problematization approach,” Industrial Marketing Management, vol. 90, pp. 558–569, 2020, doi: 10.1016/j.indmarman.2019.09.001.R. Math, Big data analytics: Recent and emerging application in services industry, vol. 654. 2018. doi: 10.1007/978-981-10-6620-7_21.H. Zhang, Z. Zang, H. Zhu, M. I. Uddin, and M. A. Amin, “Big data-assisted social media analytics for business model for business decision making system competitive analysis,” Inf Process Manag, vol. 59, no. 1, 2022, doi: 10.1016/j.ipm.2021.102762.G. A. de Oliveira, R. O. Albuquerque, C. A. B. de Andrade, R. T. de Sousa, A. L. S. Orozco, and L. J. G. Villalba, “Anonymous real-time analytics monitoring solution for decision making supported by sentiment analysis,” Sensors (Switzerland), vol. 20, no. 16, pp. 1–29, 2020, doi: 10.3390/s20164557.S. A. Farimani, M. V. Jahan, and A. Milani Fard, “From Text Representation to Financial Market Prediction: A Literature Review,” Information (Switzerland), vol. 13, no. 10, 2022, doi: 10.3390/info13100466.P. Nanda and V. Kumar, “Information Processing and Data Analytics for Decision Making: A Journey from Traditional to Modern Approaches,” Information Resources Management Journal, vol. 35, no. 2, 2022, doi: 10.4018/IRMJ.291693.R. A. Camama, J. M. Baldelomar, J. M. Claveria, M. C. Espinas, J. M. Cabardo, and L. W. Rabago, “Q-DAR: Quick disaster aid and response model using Naïve Bayes and Bag-of-Words algorithm,” in IOP Conference Series: Materials Science and Engineering, 2019. doi: 10.1088/1757-899X/482/1/012051.A. S. Yüksel and F. G. Tan, “A real-time social network-based knowledge discovery system for decision making,” Automatika, vol. 59, no. 3, pp. 262–274, 2018, doi: 10.1080/00051144.2018.1531214.M. Arafeh, P. Ceravolo, A. Mourad, E. Damiani, and E. Bellini, “Ontology based recommender system using social network data,” Future Generation Computer Systems, vol. 115, pp. 769–779, 2021, doi: 10.1016/j.future.2020.09.030.S. Ahmadi, S. Shokouhyar, M. Amerioun, and N. Salehi Tabrizi, “A social media analytics-based approach to customer-centric reverse logistics management of electronic devices: A case study on notebooks,” Journal of Retailing and Consumer Services, vol. 76, 2024, doi: 10.1016/j.jretconser.2023.103540.S. Ahmadi, S. Shokouhyar, M. H. Shahidzadeh, and I. Elpiniki Papageorgiou, “The bright side of consumers’ opinions of improving reverse logistics decisions: a social media analytic framework,” International Journal of Logistics Research and Applications, vol. 25, no. 6, pp. 977–1010, 2022, doi: 10.1080/13675567.2020.1846693.C. A. Bono, C. Cappiello, B. Pernici, E. Ramalli, and M. Vitali, “Pipeline Design for Data Preparation for Social Media Analysis,” Journal of Data and Information Quality, vol. 15, no. 4, 2023, doi: 10.1145/3597305.A. Bustamante, L. Sebastia, and E. Onaindia, “Can tourist attractions boost other activities around? A data analysis through social networks,” Sensors (Switzerland), vol. 19, no. 11, 2019, doi: 10.3390/s19112612.S. Das, A. Dutta, G. Medina, L. Minjares-Kyle, and Z. Elgart, “Extracting patterns from Twitter to promote biking,” IATSS Research, vol. 43, no. 1, pp. 51–59, 2019, doi: 10.1016/j.iatssr.2018.09.002.S. Tuarob et al., “DAViS: a unified solution for data collection, analyzation, and visualization in real-time stock market prediction,” Financial Innovation, vol. 7, no. 1, 2021, doi: 10.1186/s40854-021-00269-7.I. Lasri, A. Riadsolh, and M. Elbelkacemi, “Real-time Twitter Sentiment Analysis for Moroccan Universities using Machine Learning and Big Data Technologies,” International Journal of Emerging Technologies in Learning, vol. 18, no. 5, pp. 42–61, 2023, doi: 10.3991/ijet.v18i05.35959.B. Abu-Salih, P. Wongthongtham, D. Zhu, K. Y. Chan, and A. Rudra, Social Big Data Analytics: Practices, Techniques, and Applications. 2021. doi: 10.1007/978-981-33-6652-7.K. Cortis and B. Davis, “Over a decade of social opinion mining: a systematic review,” Artif Intell Rev, vol. 54, no. 7, pp. 4873–4965, 2021, doi: 10.1007/s10462-021-10030-2.C. R. Valêncio, L. M. M. Silva, W. Tenório, G. F. D. Zafalon, A. C. Colombini, and M. Z. Fortes, “Data warehouse design to support social media analysis in a big data environment,” Journal of Computer Science, vol. 16, no. 2, pp. 126–136, 2020, doi: 10.3844/JCSSP.2020.126.136.H. Mallek, F. Ghozzi, and F. Gargouri, “Conceptual modeling of big data SPJ operations with Twitter social medium,” Soc Netw Anal Min, vol. 13, no. 1, 2023, doi: 10.1007/s13278-023-01112-w.L. Dalla Valle and R. Kenett, “Social media big data integration: A new approach based on calibration,” Expert Syst Appl, vol. 111, pp. 76–90, 2018, doi: 10.1016/j.eswa.2017.12.044.S. C. K. Tékouabou, J. Chenal, R. Azmi, H. Toulni, E. B. Diop, and A. Nikiforova, “Identifying and Classifying Urban Data Sources for Machine Learning-Based Sustainable Urban Planning and Decision Support Systems Development,” Data (Basel), vol. 7, no. 12, 2022, doi: 10.3390/data7120170.A. Mohamed, M. K. Najafabadi, Y. B. Wah, E. A. K. Zaman, and R. Maskat, “The state of the art and taxonomy of big data analytics: view from new big data framework,” Artif Intell Rev, vol. 53, no. 2, pp. 989–1037, 2020, doi: 10.1007/s10462-019-09685-9.R. Alhajj, Advanced Technology and Social Media Influence on Research, Industry and Community, vol. 522. 2018. doi: 10.1007/978-3-319-89743-1_1.G. Bathla, R. Rani, and H. Aggarwal, “Comparative study of NoSQL databases for big data storage,” International Journal of Engineering and Technology(UAE), vol. 7, no. 2, pp. 83–87, 2018, doi: 10.14419/ijet.v7i2.6.10072.M. Srikanth, A. Liu, N. Adams-Cohen, J. Cao, R. M. Alvarez, and A. Anandkumar, “Dynamic Social Media Monitoring for Fast-Evolving Online Discussions,” in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2021, pp. 3576–3584. doi: 10.1145/3447548.3467171.S. Carta, S. Consoli, L. Piras, A. S. Podda, and D. R. Recupero, “Event Detection in Finance Using Hierarchical Clustering Algorithms on News and Tweets,” PeerJ Comput Sci, vol. 7, pp. 1–39, 2021, doi: 10.7717/PEERJ-CS.438.S. Giglio, F. Bertacchini, E. Bilotta, and P. Pantano, “Using social media to identify tourism attractiveness in six Italian cities,” Tour Manag, vol. 72, pp. 306–312, 2019, doi: 10.1016/j.tourman.2018.12.007.F. Polese, M. V. Ciasullo, O. Troisi, and G. Maione, “Sustainability in footwear industry: a big data analysis,” Sinergie, vol. 37, no. 1, pp. 149–170, 2019, doi: 10.7433/s108.2019.09.T. Russo Spena, M. Tregua, A. Ranieri, and F. Bifulco, Business Intelligence and Social Media Analytics. 2021. doi: 10.1007/978-3-030-63376-9_7.D. Jia, B. Yin, and X. Huang, “Social Network Big Data Hierarchical High-Quality Node Mining,” Wirel Commun Mob Comput, vol. 2021, 2021, doi: 10.1155/2021/1444755.W. G. Mutasher and A. F. Aljuboori, “New and Existing Approaches Reviewing of Big Data Analysis with Hadoop Tools,” Baghdad Science Journal, vol. 19, no. 4, pp. 887–898, 2022, doi: 10.21123/bsj.2022.19.4.0887.F. Sassite, M. Addou, and F. Barramou, “A Machine Learning and Multi-Agent Model to Automate Big Data Analytics in Smart Cities,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 7, pp. 441–451, 2022, doi: 10.14569/IJACSA.2022.0130754.J. R. Saura, B. R. Herraez, and A. Reyes-Menendez, “Comparing a traditional approach for financial brand communication analysis with a big data analytics technique,” IEEE Access, vol. 7, pp. 37100–37108, 2019, doi: 10.1109/ACCESS.2019.2905301.S. Shokouhyar, A. Dehkhodaei, and B. Amiri, “A mixed-method approach for modelling customer-centric mobile phone reverse logistics: application of social media data,” Journal of Modelling in Management, vol. 17, no. 2, pp. 655–696, 2022, doi: 10.1108/JM2-07-2020-0191.S. Sakr, Z. Maamar, A. Awad, B. Benatallah, and W. M. P. Van Der Aalst, “Business process analytics and big data systems: A roadmap to bridge the gap,” IEEE Access, vol. 6, pp. 77308–77320, 2018, doi: 10.1109/ACCESS.2018.2881759.L. Tang, Y. Zhang, F. Dai, Y. Yoon, and Y. Song, “What construction topics do they discuss in social media? A case study of weibo in China,” in Construction Research Congress 2018: Construction Information Technology - Selected Papers from the Construction Research Congress 2018, 2018, pp. 612–621. doi: 10.1061/9780784481264.060.L. I. Tao, “Using big data analytics to build prosperity index of transportation market,” in Proceedings of the 4th ACM SIGSPATIAL International Workshop on Safety and Resilience, EM-GIS 2018, 2018. doi: 10.1145/3284103.3284123.202014687202020771Publicationhttps://scholar.google.es/citations?user=sBulnrkAAAAJvirtual::19541-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001509364virtual::19541-1fa2de1d0-2850-4923-9c93-1f235736e5e4virtual::19541-1fa2de1d0-2850-4923-9c93-1f235736e5e4virtual::19541-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.uniandes.edu.co/bitstreams/329f23ef-fa1e-4ef4-9b94-de8f99432422/download4460e5956bc1d1639be9ae6146a50347MD51ORIGINALautorizacion tesis Signed OA.pdfautorizacion tesis Signed OA.pdfHIDEapplication/pdf267058https://repositorio.uniandes.edu.co/bitstreams/f3442ca2-74e6-45c4-9a2d-52fae1b5bd1c/downloadd0789b7af1c5991c8c3b3bb9ce89fa10MD52Decisiones Empresariales mediante la Analítica de Datos en Redes Sociales. Una aproximación al contexto colombiano.pdfDecisiones Empresariales mediante la Analítica de Datos en Redes Sociales. Una aproximación al contexto colombiano.pdfapplication/pdf851640https://repositorio.uniandes.edu.co/bitstreams/a8c1910a-c608-4f5e-bdac-4fa9ab92ed55/download16bb0822253dfe3ff6b4dc20635b80bdMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82535https://repositorio.uniandes.edu.co/bitstreams/e847f6cd-563e-408d-8a00-7aa29580ee15/downloadae9e573a68e7f92501b6913cc846c39fMD54TEXTautorizacion tesis Signed OA.pdf.txtautorizacion tesis Signed OA.pdf.txtExtracted texttext/plain2066https://repositorio.uniandes.edu.co/bitstreams/22253c32-6b23-4e1e-8c21-4e144c648b77/downloadc90fc217ee21b33688d67a6180425b9fMD55Decisiones Empresariales mediante la Analítica de Datos en Redes Sociales. Una aproximación al contexto colombiano.pdf.txtDecisiones Empresariales mediante la Analítica de Datos en Redes Sociales. Una aproximación al contexto colombiano.pdf.txtExtracted texttext/plain101667https://repositorio.uniandes.edu.co/bitstreams/a8f4305e-b64e-40db-bd9b-82e734af9b06/download518673295e77362bc916f92cc6a240dfMD57THUMBNAILautorizacion tesis Signed OA.pdf.jpgautorizacion tesis Signed OA.pdf.jpgGenerated Thumbnailimage/jpeg10945https://repositorio.uniandes.edu.co/bitstreams/ab39cd02-655b-4c4a-b945-408fd3ca86a0/downloadd8ba3a82372b14c15fb00acc0728dbe2MD56Decisiones Empresariales mediante la Analítica de Datos en Redes Sociales. Una aproximación al contexto colombiano.pdf.jpgDecisiones Empresariales mediante la Analítica de Datos en Redes Sociales. Una aproximación al contexto colombiano.pdf.jpgGenerated Thumbnailimage/jpeg7256https://repositorio.uniandes.edu.co/bitstreams/fb4bb17c-6a37-4ee3-baf9-f4e20aa1b7ad/download223ec650c6f4da9015a2a56d51596edfMD581992/74868oai:repositorio.uniandes.edu.co:1992/748682024-09-12 16:20:21.445http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.uniandes.edu.coRepositorio institucional Sénecaadminrepositorio@uniandes.edu.coPGgzPjxzdHJvbmc+RGVzY2FyZ28gZGUgUmVzcG9uc2FiaWxpZGFkIC0gTGljZW5jaWEgZGUgQXV0b3JpemFjacOzbjwvc3Ryb25nPjwvaDM+CjxwPjxzdHJvbmc+UG9yIGZhdm9yIGxlZXIgYXRlbnRhbWVudGUgZXN0ZSBkb2N1bWVudG8gcXVlIHBlcm1pdGUgYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBTw6luZWNhIHJlcHJvZHVjaXIgeSBkaXN0cmlidWlyIGxvcyByZWN1cnNvcyBkZSBpbmZvcm1hY2nDs24gZGVwb3NpdGFkb3MgbWVkaWFudGUgbGEgYXV0b3JpemFjacOzbiBkZSBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6PC9zdHJvbmc+PC9wPgo8cD5Db25jZWRhIGxhIGxpY2VuY2lhIGRlIGRlcMOzc2l0byBlc3TDoW5kYXIgc2VsZWNjaW9uYW5kbyBsYSBvcGNpw7NuIDxzdHJvbmc+J0FjZXB0YXIgbG9zIHTDqXJtaW5vcyBhbnRlcmlvcm1lbnRlIGRlc2NyaXRvcyc8L3N0cm9uZz4geSBjb250aW51YXIgZWwgcHJvY2VzbyBkZSBlbnbDrW8gbWVkaWFudGUgZWwgYm90w7NuIDxzdHJvbmc+J1NpZ3VpZW50ZScuPC9zdHJvbmc+PC9wPgo8aHI+CjxwPllvLCBlbiBtaSBjYWxpZGFkIGRlIGF1dG9yIGRlbCB0cmFiYWpvIGRlIHRlc2lzLCBtb25vZ3JhZsOtYSBvIHRyYWJham8gZGUgZ3JhZG8sIGhhZ28gZW50cmVnYSBkZWwgZWplbXBsYXIgcmVzcGVjdGl2byB5IGRlIHN1cyBhbmV4b3MgZGUgc2VyIGVsIGNhc28sIGVuIGZvcm1hdG8gZGlnaXRhbCB5L28gZWxlY3Ryw7NuaWNvIHkgYXV0b3Jpem8gYSBsYSBVbml2ZXJzaWRhZCBkZSBsb3MgQW5kZXMgcGFyYSBxdWUgcmVhbGljZSBsYSBwdWJsaWNhY2nDs24gZW4gZWwgU2lzdGVtYSBkZSBCaWJsaW90ZWNhcyBvIGVuIGN1YWxxdWllciBvdHJvIHNpc3RlbWEgbyBiYXNlIGRlIGRhdG9zIHByb3BpbyBvIGFqZW5vIGEgbGEgVW5pdmVyc2lkYWQgeSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGVuIHRvZGFzIHN1cyBmb3JtYXMsIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIHRyYW5zZm9ybWFjacOzbiB5IGRpc3RyaWJ1Y2nDs24gKGFscXVpbGVyLCBwcsOpc3RhbW8gcMO6YmxpY28gZSBpbXBvcnRhY2nDs24pIHF1ZSBtZSBjb3JyZXNwb25kZW4gY29tbyBjcmVhZG9yIGRlIGxhIG9icmEgb2JqZXRvIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8uPC9wPgo8cD5MYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGVtaXRlIGVuIGNhbGlkYWQgZGUgYXV0b3IgZGUgbGEgb2JyYSBvYmpldG8gZGVsIHByZXNlbnRlIGRvY3VtZW50byB5IG5vIGNvcnJlc3BvbmRlIGEgY2VzacOzbiBkZSBkZXJlY2hvcywgc2lubyBhIGxhIGF1dG9yaXphY2nDs24gZGUgdXNvIGFjYWTDqW1pY28gZGUgY29uZm9ybWlkYWQgY29uIGxvIGFudGVyaW9ybWVudGUgc2XDsWFsYWRvLiBMYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgZXh0ZW5zaXZhIG5vIHNvbG8gYSBsYXMgZmFjdWx0YWRlcyB5IGRlcmVjaG9zIGRlIHVzbyBzb2JyZSBsYSBvYnJhIGVuIGZvcm1hdG8gbyBzb3BvcnRlIG1hdGVyaWFsLCBzaW5vIHRhbWJpw6luIHBhcmEgZm9ybWF0byBlbGVjdHLDs25pY28sIHkgZW4gZ2VuZXJhbCBwYXJhIGN1YWxxdWllciBmb3JtYXRvIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXIuPC9wPgo8cD5FbCBhdXRvciwgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuPC9wPgo8cD5FbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgZWwgYXV0b3IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBkZSBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVbml2ZXJzaWRhZCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLjwvcD4KPHA+U2kgdGllbmUgYWxndW5hIGR1ZGEgc29icmUgbGEgbGljZW5jaWEsIHBvciBmYXZvciwgY29udGFjdGUgY29uIGVsIDxhIGhyZWY9Im1haWx0bzpiaWJsaW90ZWNhQHVuaWFuZGVzLmVkdS5jbyIgdGFyZ2V0PSJfYmxhbmsiPkFkbWluaXN0cmFkb3IgZGVsIFNpc3RlbWEuPC9hPjwvcD4K